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Abstract. We propose the realized systemic risk beta as a measure of financial companies’

contribution to systemic risk, given network interdependence between firms’ tail risk expos-
ures. Conditional on statistically pre-identified network spillover effects and market and
balance sheet information, we define the realized systemic risk beta as the total time-varying

marginal effect of a firm’s Value-at-risk (VaR) on the system’s VaR. Statistical inference
reveals a multitude of relevant risk spillover channels and determines companies’ systemic
importance in the US financial system. Our approach can be used to monitor companies’

systemic importance, enabling transparent macroprudential supervision.
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1. Introduction

The financial crisis of 2007–09 has shown that cross-sectional dependencies
between assets and credit exposure can cause risks of individual banks to
cascade, ultimately substantially threatening the stability of the entire finan-
cial system.1 Under certain economic conditions, company-specific risk
cannot be appropriately assessed in isolation without accounting for poten-
tial risk spillover effects from other firms. Indeed, it is not merely the size
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and idiosyncratic risk of a firm but also its interconnectedness with other
firms that determines its systemic relevance. The latter is a firm’s potential to
increase the risk of failure of the entire system—which we denote as systemic
risk.2 There is a broad consensus that any prudential regulatory policy
should account for the consequences of network interdependencies in the
financial system. In practice, however, any attempt at transparent implemen-
tation of such a policy must fail, as long as suitable empirical measures of
firms’ individual risk, risk spillovers, and systemic relevance are not avail-
able. In particular, how to quantify individual risk exposure and systemic
risk contributions in an appropriate but parsimonious and empirically tract-
able way, given the prevailing underlying network structure, remains an
open question. Moreover, there is need for empirically feasible measures
that rely only on available data of publicly disclosed balance sheets and
market information but still account for the complexity of the financial
system.
A general empirical assessment of systemic relevance cannot build on the

vast theoretical literature on financial network models and financial conta-
gion, as such studies typically require detailed information on intra-bank
asset and liability exposures (see, e.g., Allen and Gale, 2000; Freixas, Parigi,
and Rochet, 2000; Leitner, 2005). Such data are generally not publicly
disclosed, and even supervisory authorities can only collect partial informa-
tion on inter-bank linkages. Available empirical studies linked to this litera-
ture can therefore only partially contribute to a full picture of companies’
systemic relevance, as these studies focus on particular parts of specific
markets at particular times under particular financial conditions (see, e.g.,
Furfine, 2003; Upper and Worms, 2004, for Germany and the USA, respect-
ively).3 Furthermore, assessing risk interconnections on the basis of multi-
variate failure probability distributions has proven to be statistically
complex in the absence of restrictive assumptions (see, e.g., Boss et al.,
2004, or Zhou, 2009, and references therein). Finally, for banking regulators,
it is often unclear how complex structures eventually translate into dynamic
and predictable measures of systemic relevance.
The objective of this article is to develop an applicable measure of a firm’s

systemic relevance, explicitly accounting for the company’s

2 Bernanke (2009) and Rajan (2009) stress the danger induced by institutions that are “too
interconnected to fail” or “too systemic to fail”, in contrast with firms that are simply “too
big too fail”.
3 See also Cocco, Gomes, and Martins (2009) on parts of the financial sector in Portugal,
Elsinger, Lehar, and Summer (2006) for Austria, and Degryse and Nguyen (2007) for
Belgium. A rare exception is the unique data set for India with full information on the
intra-banking market studied in Iyer and Peydrió (2011).
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interconnectedness within the financial sector. We assess companies’ risk of
financial distress on the basis of share price information, publicly accessible
market data, and balance sheet data. Our measure quantifies the risk of
distress of individual companies and of the entire system, using tails of the
corresponding asset return distributions. Consequently, it builds on extreme
conditional quantiles and thus the concept of conditional Value-at-Risk
(VaR), a popular and widely accepted measure of tail risk.4 For each firm,
we identify its so-called relevant (tail) risk drivers as the set of macroeco-
nomic fundamentals, firm-specific characteristics, and risk spillovers from
other institutions driving the company’s VaR. Such a conditional VaR spe-
cification yields a reliable measure of a firm’s idiosyncratic risk in the
presence of network effects. Moreover, detecting which firms an institution
is connected with and measuring the strengths of these connections enables
us to construct a tail risk network for the financial system. A company’s
contribution to systemic risk is then defined as the effect of an increase in its
individual tail risk on the VaR of the financial system.
The underlying statistical setting is a two-stage quantile regression

approach: in the first step, firm-specific VaRs are estimated as functions
of firm characteristics, macroeconomic state variables, and tail risk spillovers
of other banks captured as loss exceedances. The major challenge is to shrink
the high-dimensional set of possible cross-linkages between all firms to a
feasible number of relevant risk connections. We address this issue statistic-
ally as a model selection problem in individual institution’s VaR specifica-
tions, a problem that we solve in the first step. Specifically, we use a novel
Least Absolute Shrinkage and Selection Operator (LASSO) technique (see
Belloni and Chernozhukov, 2011), which allows for identification of the
relevant tail risk drivers for each company in a data-driven way. The result-
ing risk interconnections are represented in a network graph, as illustrated,
for example, in Figure 1 for the system of the fifty-seven largest US financial
companies. In the second step, to measure a firm’s systemic impact, we
individually estimate the VaR of a value-weighted index of the financial
sector as a function of the firm’s estimated VaR while controlling for the
pre-identified company-specific risk drivers and the macroeconomic state
variables. We derive standard errors that explicitly account for estimation
errors that arise in the first estimation step. Additionally, we utilize boot-
strap methods needed for accurate parameter tests in finite samples.

4 In principle, our methodology could also be adapted to other tail risk measures such as,
for example, expected shortfall. Such a setting, however, would involve additional estima-
tion steps and complications, probably inducing an overall loss of accuracy in our results,
given the limited amount of available data.
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We determine a company as systemically relevant if the marginal effect of
the firm’s VaR on the VaR of the system is statistically significant and
nonnegative. In analogy to an (inverted) asset pricing relationship in quan-
tiles, we call this marginal effect systemic risk beta. It is modeled as a
function of firm-specific characteristics, such as leverage, maturity
mismatch, and size, while controlling for macroeconomic conditions and
the firm’s network position. Thus, a firm’s marginal systemic impact can
change due to varying market or balance sheet conditions, although its
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Figure 1. Risk network of the US financial system schematically highlighting key companies
in the system in 2000–08. Details on all firms in the system that appear as unlabeled shaded
nodes will be provided later in the article. An arrow pointing from firm j to firm i reflects
the impact of extreme returns of j on the VaR of i (VaRi), a connection that is identified as
relevant through the statistical selection techniques presented in the remainder of the article.
VaRs are measured in terms of 5% quantiles of the return distribution. The effect of j on i
is measured in terms of the impact of an increase of the return Xj on VaRi, given that Xi is
below its 10% quantile, that is, i’s so-called loss exceedance. The size of the respective
increase in VaRj, given a 1% increase in the loss exceedance of i, is reflected in the thickness
of the respective arrowhead, whereby we distinguish between three categories: thin arrow-
heads indicate an increase of up to 0.4, medium-sized arrowheads indicate an increase of
0.4–0.8, and thick arrowheads indicate an increase greater than 0.8. The thickness of the
line of an arrow reflects these same categories. If an arrow points in both directions, the
thickness of the line corresponds to the larger of the two effects. The graph is constructed
so that the total length of all arrows in the system is minimized. Accordingly, more highly
interconnected firms are located in the center.

688 N. HAUTSCHETAL.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/19/2/685/1582421 by guest on 25 April 2024



individual risk level might be identical at different points in time. The total
increase in the system VaR due to a change in a firm-specific VaR is
obtained as the product of the firm’s systemic risk beta and its VaR. The
latter, called the “realized” systemic risk beta, rises with increases in the
firm’s VaR. We use it to compare the levels of systemic importance of dif-
ferent companies and thus rank them across the system.
Our empirical results reveal a high degree of tail risk interconnectedness

among US financial institutions, network effects that are dominant drivers
of firms’ individual risk. Detected spillover channels can be largely attributed
to direct credit or liquidity exposure, although in some cases, they may also
result from common factors, for example, factors specific to the sector or the
business model, which are not covered by our firm-specific control variables.
Generally, these links contain fundamental information for supervisory
authorities but also for company risk managers. Based on the topology of
the systemic risk network, we categorize firms into three broad groups, ac-
cording to their type and extent of connectedness with other companies:
main risk transmitters, risk recipients, and companies that both receive
and transmit tail risk. From a supervisory point of view, the second group
has the least systemic impact. Monitoring this group, however, may never-
theless convey important information on hidden risks and possible threats
induced by a high degree of interconnectedness. The highest attention of
supervisory authorities should be directed toward firms that mainly act as
risk drivers or are highly interconnected risk transmitters within the system.
These are firms, labeled “too interconnected to fail”, in the center of the
network, and also risk producers at the network periphery that are linked to
only a few heavily connected risk transmitters.
While the systemic risk network yields qualitative information regarding

risk channels and the roles of companies within the financial system, esti-
mates of systemic risk betas allow us to quantify the systemic relevance of
individual firms and thus complement the full picture. Ranking companies
based on (realized) systemic risk betas show that large depositories are par-
ticularly risky. After controlling for relevant network effects, these firms
have overall the strongest impact on systemic risk and should be regulated
accordingly. Time series patterns of (realized) systemic risk betas indicate
that most companies’ systemic risk contributions sharply increased during
the 2007–08 financial crisis, effects that were particularly pronounced for
firms that experienced financial distress during the crisis and are (ex post)
identified as clearly systemically risky under our approach. Figure 2 illus-
trates the paths of their marginal systemic contributions, as reflected in their
systemic risk betas and their exposures to idiosyncratic tail risk, as quantified
by their VaRs. A precrisis case study confirms the validity of our
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methodology, as firms such as, for example, Lehman Brothers are ex-ante
identified as highly systemically relevant. It is well-known that the subse-
quent failure of this firm indeed had a huge impact on the stability of the
entire financial system. Similarly, the extensive bailouts of American
International Group (AIG), Freddie Mac, and Fannie Mae can be justified,
given their high systemic risk betas and high interconnectedness as of the end
of 2007.
The remainder of the article is structured as follows. Section 2 describes

the article’s links with related literature and presents the underlying data. In
Section 3, we present the model and the procedure used to estimate individ-
ual companies’ VaRs, which are the basis for determining the systemic tail
risk network structure. The notion of a realized systemic risk beta is formally
introduced in Section 4, and realized systemic risk betas are identified for
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Figure 2. Systemic importance of five exemplary firms in the US financial system at two
points in time before and at the height of the financial crisis, 2008. Systemic relevance is
determined by the statistical significance and positivity of “systemic risk betas” quantifying
the marginal increase of the VaR of the system, given an increase in a bank’s VaR, while
controlling for the bank’s (pre-identified) risk drivers. All VaRs are computed at the 5%
level and are by definition positive. We depict the degree of systemic relevance by the size of
the respective “realized” version of the systemic risk beta, that is, the product of the risk
beta and the corresponding VaR of a company, representing the company’s total effect on
systemic risk. Connecting lines are added to graphically highlight changes between the two
points in time but do not represent actual evolutionary paths. The size of each element in
the graph reflects the size of the VaR of the respective company at each of the two points in
time. We use the following scale: the element is k times the standard size with k¼ 1 for
VaR � 0:05, k ¼ 1:5 for VaR 2 ð0:05, 0:1�, k¼ 2 for VaR 2 ð0:1, 0:15�, k¼ 3 for
VaR 2 ð0:2, 0:25� and k ¼ 5:5 for VaR 2 ð0:65, 0:7�. Attached numbers inside the figure
mark the position of the respective company in an overall ranking of the fifty-seven
largest US financial companies for each of the two time points.

690 N. HAUTSCHETAL.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/19/2/685/1582421 by guest on 25 April 2024

e.g.
-
paper
 paper
-


each firm in an individually tailored parsimonious partial equilibrium
setting. This section also presents the corresponding estimation procedure
and valid inference for a two-step quantile regression setting. Our empirical
results are presented in the form of systemic risk rankings. In Section 5, we
validate our model and results. In particular, in a case study that uses
only precrisis data, we illustrate that realized systemic risk betas are effective
in predicting the distress and systemic relevance of five large financial insti-
tutions that were affected by the financial crisis. Section 6 concludes the
article.

2. Literature and Data

2.1 RELATION TO THE RECENT EMPIRICAL LITERATURE

Our article relates to several strands of recent empirical literature on
systemic risk contributions. Building on the concept of VaR, Adrian and
Brunnermeier (2011) were the first to model systemic risk contributions
based on balance sheet characteristics. They introduce the so-called
CoVaR as a firm’s (conditional) VaR, given that some other firm’s stock
return takes a certain benchmark value (e.g., the individual VaR). There are,
however, substantial conceptional differences between their approach and
ours: the realized systemic risk beta in our approach is the direct marginal
effect of an individual VaR on the VaR of the system. Conversely, CoVaR
builds on the marginal effect of the return and is only evaluated at the value
of the (pre-estimated) VaR. As returns are below their VaR(q) ð1� qÞ% of
the time,5 the estimated marginal systemic importance of CoVaR tends to
systematically overrate firms with lower average returns for identical risk
levels. Furthermore, CoVaR can by definition only vary over time through
the channel of individual VaRs. Due to multicollinearity, however, it cannot
be modeled in terms of firm-specific variables. Thus, changes in firms’
systemic relevance only result from variations in underlying macroeconomic
factors, while variations in firms’ leverage and interdependence with other
institutions have no direct effect. Under our approach, in contrast, we
identify network spillovers as crucial elements in measuring individual risk
and in unbiased estimation of systemic relevance. This is illustrated in a
robustness study in Subsection 3.3.a. Moreover, the proposed realized

5 The VaR(q) is defined as the negative q-conditional return quantile.
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systemic risk beta captures variations in firms’ marginal systemic importance
driven by changes in firm-specific characteristics.
Our work also complements papers, such as Acharya et al. (2010),

Brownlees and Engle (2012) and Acharya, Engle, and Richardson
(2012), which measure a company’s systemic relevance in terms of the
size of potential bailout costs. Such approaches cannot detect spillover
effects driven by the topology of the risk network and may tend to
underestimate the systemic importance of highly interconnected
companies. While Brownlees and Engle (2012) study an individual
firm’s conditionally expected asset return given distress of the system,
we investigate the reverse relation and measure the effect on the system
given a firm is in financial trouble. Taking complementary perspectives,
the two approaches measure different dimensions of systemic risk.
However, as our model is based on economic state variables and loss
exceedances, it automatically adjusts and prevails in distress scenarios
under external shocks. This is a clear advantage of our approach
compared with pure time series approaches (cp. e.g., White, Kim, and
Manganelli, 2010; Brownlees and Engle, 2012). As illustrated in the
validity case study in Section 5.2, the estimated systemic risk betas
indicate an increase in systemic relevance of some companies earlier
than in competing settings.
Our work also augments research of Billio et al. (2012), who present a

collection of different systemic risk measures. These measures mainly
build on regressions of (conditional) means of returns. However, assess-
ing and predicting systemic and firm-specific risk requires regression in
the (left) tails of asset return distributions rather than the center. Hence,
our approach focuses on extreme quantiles and thus substantially differs
from a correlation type analysis, as in Billio et al. (2012). Moreover, in
contrast to our approach, the latter authors’ determination of causality
is based only on pairwise relations. Such a setting, however, produces
misleading results in a high-dimensional interconnected system, as it is
impossible to identify whether one firm drives another or if both are
driven by a third company. Our results are also complementary to
network analysis based on volatility spillovers in vector autoregressive
systems, for example, Diebold and Yilmaz (2012) and Diebold and
Yilmaz (2013).
Finally, we contribute to macroeconomic approaches that take a more

aggregated view, for example, the literature on systemic risk indicators
(e.g., Segoviano and Goodhart, 2009; Giesecke and Kim, 2011) or papers
on early warning signals (e.g., Koopman, Lucas, and Schwaab, 2011;
Schwaab, Koopman, and Lucas, 2011).
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2.2 DATA

Our analysis focuses on publicly traded US financial institutions. The list of
included companies in Table I comprises depositories, broker dealers, insur-
ance companies, and other firms.6 To assess a firm’s systemic relevance, we
use publicly accessible market and balance sheet data. The forward-looking
nature and real-time availability of equity market data serves well in
providing an immediate and transparent measure of systemic risk. The ad-
vantage of timeliness is evident, even if new financial regulations compel
institutions to reveal information on mutual credit linkages and leverage
to supervisory authorities. Currently, however, data on connections
between firms’ assets and obligations are largely proprietary and far from
comprehensive, even for supervisors.
Daily equity prices are obtained from Datastream and are converted to

weekly log returns. To account for the general state of the economy, we use
weekly observations of seven lagged macroeconomic variables, Mt�1, as
suggested and used by Adrian and Brunnermeier (2011) (abbreviations
used in the remainder of the article are given in brackets): the implied vola-
tility index, VIX, as computed by the Chicago Board Options Exchange
(vix), a short-term “liquidity spread”, computed as the difference of the
3-month collateral repo rate (available on Bloomberg) and the 3-month
Treasury bill rate from the Federal Reserve Bank of New York (repo), the
change in the 3-month Treasury bill rate (yield3m) and the change in the
slope of the yield curve, corresponding to the spread between the 10-year and
3-month Treasury bill rate (term). Additionally, we utilize changes in credit
spreads between BAA rated bonds and the Treasury bill rate (both at
10-year maturity) (credit), the weekly equity market return from CRSP
(marketret) and the 1-year cumulative real estate sector return, computed
as the value-weighted average of real estate companies, available in the
CRSP data base (housing).7 Analyzing the time series properties of the vari-
ables reveals that, with the exceptions of vix and housing, they are station-
ary. Applying the Engle and Granger (1987) two-step procedure, however,
we find evidence of cointegration between the two variables, which implies
that their joint explanation in the model is stationary and that inference thus
remains valid (see Pagan and Wickens, 1989). Therefore, to maintain the

6 Companies are classified into these groups according to their two-digit SIC codes, fol-

lowing the categorization in Adrian and Brunnermeier (2011), Appendix C.
7 We found that this set of aggregate financial market variables provides sufficient explana-
tory power that is not further increased by additional controls such as, for example, Fama-
French type factors (see Subsection 3.3.a. for details).
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comparability of our results with those in the literature, we use the two
regressors in levels.
To capture characteristics of individual institutions that predict a bank’s

propensity to become financially distressed, Ci
t�1, we follow Adrian and

Brunnermeier (2011) and use (i) leverage, calculated as the value of total
assets divided by total equity (in book values) (LEV); (ii) maturity mismatch,
measuring short-term refinancing risk, calculated as short-term debt net of
cash divided by total liabilities (MMM); (iii) market-to-book value, defined
as the ratio of the market value to the book value of total equity (BM); (iv)
market capitalization, defined as the logarithm of market valued total assets
(SIZE); and (v) equity return volatility, computed from daily equity return
data (VOL). The system return is chosen as the return on the financial sector
index provided by Datastream. It is computed as the value-weighted average
of prices of 190 US financial institutions.8

As balance sheets are available only on a quarterly basis, we interpolate
the quarterly data to daily level, using cubic splines, and then aggregate them
back to calendar weeks.9 We focus on fifty-seven financial institutions that
existed throughout the period from the beginning of 2000 to the end of 2008,
resulting in 467 weekly observations of individual returns. This criterion
excludes companies that defaulted during the financial crisis. The latter
are analyzed separately in a shorter sample case study.

3. A Tail Risk Network

3.1 DETERMINING DRIVERS OF FIRM-SPECIFIC TAIL RISK

We measure the tail risk of a company with asset return Xi
t at time t as its

conditional Value-at-Risk (VaR), VaRi
q, t, given a set of company-specific

tail risk drivers W
ðiÞ
t :

Prð�Xi
t � VaRi

q, tjW
ðiÞ
t Þ ¼ PrðXi

t � Qi
q, tjW

ðiÞ
t Þ ¼ q ð1Þ

with VaRi
q, t ¼ VaRi

q, tðW
ðiÞ
t Þ ¼ �Q

i
q, t denoting the (negative) conditional

q-quantile of Xi
t.
10 The relevant i-specific tail risk drivers are determined

8 See Adrian and Brunnermeier (2011), Appendix C, who explicitly show that this variable
induces no inherent endogeneity in the model.
9 For in-sample estimation, this interpolation step captures changes in balance sheet char-

acteristics in a smoother way than the use of plain data. For forecasting purposes, however,
interpolation is not possible. See Hautsch, Schaumburg, and Schienle (2014) for details.
10 Defining VaR as the negative p-quantile ensures that the VaR is positive and is inter-
preted as a loss position.
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out of a large set of potential regressors Wt containing lagged macroeco-

nomic state variables Mt�1, lagged firm-specific characteristics Ci
t�1, the

i-specific lagged return Xi
t�1 and influences of companies other than i,

E�it ¼ ðE
j
tÞj 6¼i. We capture these network dependencies in terms of so-called

loss exceedances, defined (for firm j) as Ej
t ¼ Xj

t1ðX
j
t � Q̂j

0:1Þ, where Q̂0:1 is the

unconditional 10% sample quantile of Xj. Hence, company j only affects the
VaR of company i if the former is in distress.
We model the conditional VaR of firm i at time t ¼ 1, . . . ,T as a linear

function of the i-specific tail risk drivers W
ðiÞ
t ,

VaRi
q ¼WðiÞ

0
�iq: ð2Þ

This relation could be estimated using a corresponding linear model in the
corresponding return quantile

Xi
t ¼ �W

ðiÞ
t

0
�iq þ "

i
t, with Qqð"

i
tjW

ðiÞ
t Þ ¼ 0 ð3Þ

if we knew the i-relevant risk drivers WðiÞ selected from W. Then the esti-

mates b�iq of �iq could be obtained from the standard linear quantile regression

(Koenker and Bassett, 1978) by minimizing

1

T

XT
t¼1

�q Xi
t þW

ðiÞ
t

0
�iq

� �
ð4Þ

with loss function �qðuÞ ¼ uðq� Iðu < 0ÞÞ, where the indicator Ið�Þ is 1 for
u < 0 and zero otherwise, and

dVaRi
q, t ¼W

ðiÞ
t

0b�iq: ð5Þ

The relevant risk drivers WðiÞ for firm i, however, are unknown and must be
determined from W in advance. Appropriate model selection techniques are

not straightforward in the given setting, as tests of the individual significance
of single variables do not account for the (possibly high) collinearity between
the covariates. Similarly, sequences of joint significance tests have too many

possible variations to be easily checked in cases of more than sixty variables.
Therefore, we choose the relevant covariates in a data-driven way by em-
ploying a statistical shrinkage technique known as the least absolute shrink-

age and selection operator (LASSO). LASSO methods are standard for
high-dimensional conditional mean regression problems (see Tibshirani,
1996) and have recently been adapted to quantile regression by Belloni
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and Chernozhukov (2011). Accordingly, we run an l1-penalized quantile re-

gression and calculate, for a fixed individual penalty parameter �i,

e�iq ¼ argmin�i
1

T

XT
t¼1

�q Xi
t þW0t�

i
� �

þ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� qÞ

p
T

XK
k¼1

�̂kj�
i
kj, ð6Þ

with the set of potentially relevant regressors Wt ¼ ðWt, kÞ
K
k¼1, which are

demeaned, componentwise variation �̂2k ¼
1
T

PT
t¼1 ðWt, kÞ

2, and the loss

function �q as in Equation (4). The key idea is to select relevant regressors

according to the absolute values of their estimated marginal effects (scaled
by the regressor’s variation) in the penalized VaR regression (6). Regressors
are eliminated if their shrunken coefficients are sufficiently close to zero.

Here, all firms in W with absolute marginal effects je�ij below a threshold

� ¼ 0:0001 are excluded, and only the K(i) remaining relevant regressors WðiÞ

are retained. Hence, LASSO deselects regressors that contribute only small
amounts of variation. Due to the additional penalty term in (6), all coeffi-

cients e�iq are generally downwardly biased in finite samples. Therefore, we

reestimate the unrestricted model (4) only with the selected relevant

regressors WðiÞ, yielding the final estimates b�iq. This post-LASSO step

produces finite sample estimates of the coefficients �iq, estimates that are

superior to the original LASSO estimates or plain quantile regression
results without penalization, which suffer from overidentification problems
(see the original paper by Belloni and Chernozhukov, 2011 for the consist-
ency proof of the post-LASSO step).
The selection of relevant risk drivers via LASSO crucially depends on the

choice of the company-specific penalty parameter �i. The larger is the chosen
value of �i, the more regressors are eliminated. Conversely, in case of �i ¼ 0,
we are back in the standard quantile regression setting (4) without any dese-
lection. For each institution, we determine the appropriate penalty level �i in
a completely data-driven way by using the supremum norm of a rescaled
gradient of the sample criterion function, evaluated at the true parameter
value, as in Belloni and Chernozhukov (2011).11 Consequently, the number
and set of relevant risk drivers are determined only from the data, without
any restrictive pre-assumptions. For further details on this empirical proced-
ure, see (A.5) in the Appendix.

11 See Step 1 for (A.5) in the Appendix for the scaling and the exact formula.
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Evaluating the goodness of fit of the resulting conditional VaR specifica-
tions requires quantifying how well the model captures the specific percentile
of the return distribution and how well the model predicts the size and fre-
quency of losses. With respect to the latter issue, it is not sufficient to use a
simple quantile-based modification of the conventional R2 statistic. We
therefore consider a VaR specification as inadequate if it either fails to
produce the correct empirical level of VaR exceedances or the sequence of
exceedances is not independently and identically distributed. This ensures
that VaR violations today do not contain information about VaR violations
in the future and that both occur according to the same distribution. This
can be formally tested using a likelihood ratio (LR) version of the dynamic
quantile (DQ) test developed in Engle and Manganelli (2004) which is
described in detail in (A.7) in the Appendix. Berkowitz, Christoffersen,
and Pelletier (2011) show that this LR test has superior size and power
properties compared with competing conditional VaR backtesting
methods, which dominate plain unconditional level tests (as e.g., Kupiec
(1995)).
Using the LASSO selection procedure described above, we estimate VaR

specifications for q ¼ 0:05 for all individual companies.12 Table II provides
exemplary VaRi (post-)LASSO regression results for firms in four industry
sectors: depositories, insurance companies, broker dealers, and others. We
find that the dominant drivers of company-specific VaRs are loss
exceedances of other firms. In their presence, macroeconomic variables
and firm-specific characteristics often do not have any statistically significant
influence and are not selected by the LASSO procedure. In Table II, for
instance, VaR specifications for Goldman Sachs (GS), Morgan Stanley
(MS), JP Morgan (JPM), and AIG exclusively contain loss exceedances of
other firms. The importance of cross-firm effects as drivers of individual tail
risk is confirmed by a joint significance test of the individually selected loss
exceedances E�it and the superiority of resulting VaR forecasts. The latter
aspect is analyzed in Subsection 3.3.
As a result of our estimation procedure, we not only detect “relevant” risk

connections but can assign directions thereof. Selecting Ej as a relevant risk
driver of VaRi implies a directed link from j to i. If, in addition, Ei signifi-
cantly affects VaRj, we observe a bidirectional relation, which is, however,
not symmetric.13 Note that our analysis, thus, is not affected by simultaneity

12 Due to the limited number of observations, we refrain from considering more extreme
probabilities.
13 For the significance of effects, see Subsection 3.3.a.
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Table II. Exemplary post-LASSO quantile regressions for VaRi with q ¼ 0:05

Regressors were selected by LASSO as outlined in Section 3.1. Ex. j is the loss exceedance

of company j, all other regressors are as in Section 2.2.

Value Std. Error t-ratio p-value

GS

(Intercept) �0.046 0.004 �12.54 0.000

Ex.C �0.239 0.205 �1.17 0.243

Ex.JPM �0.014 0.119 �0.121 0.904

Ex.LM �0.215 0.111 �1.932 0.054

Ex.MS �0.403 0.079 �5.096 0.000

Ex.SCHW �0.282 0.244 �1.153 0.249

MS

(Intercept) �0.041 0.003 �16.017 0.000

Ex.AIG �0.106 0.026 �4.036 0.000

Ex.AON 0.445 0.145 3.066 0.002

Ex.BAC �0.604 0.145 �4.157 0.000

Ex.EV �0.158 0.134 �1.179 0.239

Ex.GS �0.634 0.121 �5.236 0.000

Ex.HBAN �0.273 0.136 �2.006 0.045

Ex.HCBK �0.452 0.28 �1.611 0.108

Ex.MTB �0.269 0.193 �1.392 0.165

Ex.SCHW �0.381 0.116 �3.294 0.001

Ex.SEIC �0.229 0.154 �1.485 0.138

Ex.STT �0.174 0.176 �0.986 0.325

Regions Financial

(Intercept) �0.004 0.004 �1.072 0.284

Ex.AMTD �0.091 0.04 �2.274 0.023

Ex.AON �0.256 0.086 �2.998 0.003

Ex.BBT �0.307 0.104 �2.95 0.003

Ex.FITB 0.032 0.087 0.37 0.712

Ex.HBAN �0.042 0.064 �0.661 0.509

Ex.PBCT �0.307 0.085 �3.598 0

Ex.STI �0.244 0.114 �2.137 0.033

Ex.ZION �0.196 0.1 �1.947 0.052

BM 0.024 0.007 3.221 0.001

VOL 0.251 0.16 1.568 0.118

Fannie Mae

(Intercept) �0.049 0.003 �17.075 0.000

Ex.AIG �0.227 0.231 �0.981 0.327

Ex.FRE �1.007 0.121 �8.298 0.000

AIG

(Intercept) �0.043 0.003 �14.026 0.000

Ex.FRE �0.201 0.014 �14.033 0.000

Ex.MBI �0.336 0.138 �2.423 0.016

Ex.RF �0.455 0.051 �8.975 0.000

Ex.TMK �0.813 0.721 �1.127 0.260

Torchmark

(Intercept) �0.019 0.003 �7.203 0

(continued)
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biases. For instance, a highly negative return of company j increases the
conditional loss quantile and thus the VaR of firm i. The latter, however,
does not necessarily imply a higher (realized) loss exceedance of i, as the
relationship between a specific conditional quantile and the conditional dis-
tribution of exceedances (for a fixed threshold) is generally unknown. Even if
quantiles and exceedances are positively related, an increase in VaRi may
only induce an increase in the expected loss exceedance, not necessarily in the
realized loss exceedance. Consequently, the potential effect of a simultaneity
bias (if it exists at all) is expected to be much weaker than in classical mean
regressions and thus can be safely ignored. We consider it an advantage of
our approach that it addresses network dependencies in a parsimonious way,

Table II. (Continued)

Value Std. Error t-ratio p-value

Ex.AFL �0.332 0.169 �1.962 0.05

Ex.ALL �0.256 0.207 �1.237 0.217

Ex.BBT �0.296 0.223 �1.329 0.184

Ex.HIG �0.084 0.175 �0.483 0.63

Ex.LNC 0.002 0.135 0.018 0.986

Ex.NTRS �0.002 0.115 �0.015 0.988

Ex.SEIC �0.243 0.12 �2.023 0.044

Ex.UNM �0.088 0.179 �0.489 0.625

Ex.UNP �0.242 0.242 �1 0.318

repo 0.031 0.017 1.78 0.076

JP Morgan

(Intercept) �0.040 0.003 �12.963 0.000

Ex.BAC �0.229 0.133 �1.724 0.085

Ex.BK �0.237 0.129 �1.842 0.066

Ex.C �0.380 0.22 �1.729 0.084

Ex.GS �0.253 0.154 �1.648 0.199

Ex.PNC �0.274 0.077 �3.583 0.000

Ex.SCHW �0.410 0.118 �3.472 0.001

American Express

(Intercept) �0.035 0.003 �11.723 0

Ex.AFL �0.42 0.408 �1.03 0.303

Ex.BAC �0.361 0.205 �1.757 0.08

Ex.BBT �0.145 0.126 �1.151 0.25

Ex.BEN �0.112 0.139 �0.808 0.42

Ex.CINF �0.153 0.153 �0.999 0.318

Ex.EV �0.181 0.163 �1.112 0.267

Ex.L 0.014 0.114 0.122 0.903

Ex.SEIC �0.106 0.09 �1.186 0.236

Ex.SLM 0.073 0.067 1.09 0.276

Ex.STT �0.351 0.159 �2.2 0.028

Ex.TROW �0.3 0.126 �2.39 0.017

700 N. HAUTSCHETAL.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/19/2/685/1582421 by guest on 25 April 2024



avoiding infeasible treatment of an explicit large system of conditional
quantiles.14

There may be several economic reasons for linkages between two
companies—reasons, however, that cannot be empirically identified from
publicly disclosed market data.15 By including firm-specific characteristics
and macroeconomic state variables in our model, we do, however, prevent
that determined identified risk connections result from common (risk)
factors. Hence, we rule out the possibility that tail dependencies are
driven, for instance, by periods of high volatility, the flattening of yield
curves or declining overall credit quality. Accordingly, the identified risk
connections are likely to be attributable to remaining factors, such as
credit or liquidity exposure, business model commonalities, or sector-
specific risk factors. In this sense, connections between close competitors
such as GS and MS or the influence of the mortgage company Freddie
Mac (FRE) on AIG confirm market evidence.

3.2 NETWORK MODEL AND STRUCTURE

We construct a tail risk network of the system, using individually selected
loss exceedances.16 Taking all firms as nodes in such a network, there is an
influence of firm j on firm i, if Ej is LASSO-selected in (6) as a relevant driver
of VaRi

q. Let Ej be the k-th component of WðiÞ. Then the corresponding
coefficient �iq, k in �iq marks the impact of firm j on firm i in the network.
If Ej is not selected as a relevant risk driver of firm i, there is no network
arrow from firm j to firm i.
An overview of the identified tail risk connections between all companies

(based on VaR specifications with q ¼ 0:05) is provided in Table III.17

14 Statistically, it is an open question how to generally handle such a system of conditional

quantiles. In contrast to relations in (conditional) means, it is unclear how marginal
q-quantiles constitute the corresponding quantile in the joint distribution under appropriate
independence assumptions. Only in lags, restricted to very small dimensions and under
strong assumptions, have solutions been obtained via CaViAR type structures (see White,

Kim, and Manganelli, 2010).
15 Note that a valid empirical classification into different types of linkages would require
comprehensive data on the credit and liquidity exposures of firms. Such information,

however, is largely not publicly available.
16 In the Bayesian network literature, a network that builds on direct one-step influences
constitutes a so-called Markov blanket, which is assumed to contain all relevant informa-

tion needed to predict a node’s role in the network (see Friedman, Geiger, and Goldszmidt,
1997).
17 More extreme probabilities are theoretically feasible but require a larger number of
observations for sufficient statistical precision. We also used alternative thresholds for
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The number of risk connections substantially varies over the cross-section
of companies. To effectively illustrate identified risk connections and
directions, we graphically depict the resulting network of companies in
Figure 3. The layout of the network is chosen so that the sum of cross-
firm distances is minimized. Consequently, the most highly connected
firms are located in the center.
The resulting network topology allows us to distinguish between three

major categories of firms: the first group contains companies with only a
few incoming arrows but many outgoing ones; hence, such firms mainly act
as risk drivers within the system. These are institutions whose failure may
affect many others, while they themselves would be relatively unaffected by
the distress of others. Such firms should be closely monitored by supervisory
authorities, as the failure of such a bank could have widespread conse-
quences. An example of such a bank is State Street Corporation (STT),
one of the top ten US banks and a firm whose failure would affect financial
services companies such as American Express and Northern Trust (NTRS),
Bank of New York Mellon, and Morgan Stanley. Another example is the
financial services firm SEI Investments, which has links to various large
institutions such as Bank of America, American Express, Morgan Stanley,
and the online broker TD Ameritrade (AMTD).
The second group contains companies that mainly act as risk takers. These

companies are not necessarily systemically risky, but they may suffer severely
from the distress of others and should account for such spillover effects in
their internal risk management. According to Table III and Figure 3, such
firms are primarily insurance companies.
The third group is the largest category. It consists of companies that serve

as both risk recipients and risk transmitters that amplify tail risk spillovers
by further disseminating risk into new channels. Due to their role as risk
distributors, such companies are key systemic players and should be
supervised accordingly. Examples of strongly connected companies in this
category are GS, Citigroup, Morgan Stanley, AON Corporation (AON),
Bank of America, American Express, and Freddie Mac. The latter was par-
ticularly affected by the 2008 credit crunch in the mortgage sector. Details on
the specific roles of Citigroup and MS within the system are highlighted in
Figure 4. Examples of firms with risk connections with only a few other
institutions are Fannie Mae and AIG. Fannie Mae exhibits significant bi-
lateral risk connections with its main competitor Freddie Mac. AIG holds

loss exceedances but found that the 10% (unconditional) quantile optimally balances the
trade-off between sufficient numbers of nonzero observations in E�it and sufficiently many
extreme losses.
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Figure 4. Full Network graphs of Citigroup (C) and Morgan Stanley (MS) highlighting risk
drivers and risk recipients directly connected to the respective companies with bold arrows,
according to the respective size of the effect. Arrows, colors, and acronyms are as in Figure
3. For simplicity, all other links only indicate spillover effects without referring to size. The
list of firm acronyms is contained in Table I.
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significant positions in mortgage backed securities and thus is closely con-
nected to both Fannie Mae and Freddie Mac. Although the numbers of their
relevant risk connections within the network are limited, such firms can
nevertheless critically impact the overall system. In the 2008 financial
crisis, the dependence between Freddie Mac and Fannie Mae and their inter-
actions with AIG had severe systemic consequences.
Figure 5 indicates that it is not sufficient to focus exclusively on sector-

specific subnetworks, as interconnectedness of institutions is widespread
between industry sectors. We observe that tail risks of depositories,

Figure 5. Network graph arranged according to industry groups, highlighting the industry-
specific risk spillovers from depositories (top left), insurance companies (top right), broker
dealers (bottom left), and others (bottom right). Arrows mark risk spillovers effects without
referring to their respective sizes. Otherwise, arrows and colors are as in Figure 3. A
complete list of firms’ acronyms is contained in Table I.
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insurance companies, and other firms are relatively evenly distributed among
all industry groups. Depositories are the most strongly connected industry
sector and exhibit their strongest connections among themselves. This con-
trasts with the other industries, where cross-firm connections within groups
are less intense. In addition, broker dealers differ from other industry
categories in that they display a much more concentrated risk outflow.

3.3 ROBUSTNESS

3.3.a Network model validity

The validity of the network identified is confirmed by four analyses: First,
the significance of network effects in the individual VaR specifications are
formally tested using a joint significance test of the individually selected loss
exceedances E�it in (2). We conduct this analysis based on a quantile regres-
sion version of the F-test for joint linear hypotheses developed by Koenker
and Bassett (1982). Our results show that the selected tail risk spillovers are
highly significant in all but a few cases. See Table III for an overview of all
cross-effects. Detailed test results are available from the authors upon
request.
Second, the importance of including other companies’ loss exceedances as

risk drivers for company i is further supported by comparing the (in-sample)
forecast performance of our specifications with corresponding models of
VaRi, using macroeconomic variables only (as in Adrian and
Brunnermeier (2011)). According to the employed backtests, specifications
allowing for cross-firm dependencies have strong predictive ability and are
significantly superior to models that ignore network linkages. Figure 6
shows the distributions of the backtesting p-values implied by both
models. Hence, intercompany linkages add crucial explanatory power in
VaR specifications.
Third, network effects remain important when we alter the set of eco-

nomic state variables M by adding asset pricing factors such as the three
Fama-French factors and the momentum factor of Carhart (1997).18 We
find that in the presence of network exceedances, these factors are deselected
in all cases by the LASSO method and thus have no additional explanatory
power. Hence, tails of asset returns are driven by factors other than the
equity risk premium (associated with conditional means of returns).

18 The data are downloaded from the website of Kenneth French at http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Finally, our results show that the most significant information about
cross-company dependencies in tail risk is primarily contained in contem-
poraneous loss exceedances E�it . In contrast, alternative VaR specifications
that utilize contemporaneous returns X�jt or lagged loss exceedances E�it�1

yield significantly inferior backtest performance, with the regressors mostly
found to be insignificant in joint F-tests.19

3.3.b Accuracy of the LASSO selection step

The firm-specific LASSO penalty parameter �i is a crucial coefficient under
our approach, as it determines the denseness of the risk network and influ-
ences the selection of control variables when estimating systemic risk betas in
Section 4. It is chosen in a data-driven way, optimizing a backtest criterion
(see Sections 3.1 and 6). To validate this model selection step and to assess
whether the procedure prevents overfitting, we analyze the consequences of
increasing the LASSO penalty parameter. Note that higher values of �i lead
to the selection of smaller models. If our procedure had a tendency to overfit

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Macro model                             LASSO model

P
−

V
al

ue
s

Figure 6. Boxplots of backtesting p-values indicating the in-sample model fit (i.e., testing
the null hypothesis of formal statistical adequacy) of VaR specifications including macro-
economic regressors only (left) and VaR specifications resulting from the LASSO selection
procedure (6) (right).

19 The corresponding results are available upon request and are omitted here for brevity.
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the tails, the overall goodness of fit would increase for higher values of �i.
We check for this by increasing all penalty parameters by 10% and 20%.20

We show that, based on backtest performance, overall goodness of fit de-
teriorates substantially. This is demonstrated by the three boxplots and il-
lustrations of individual p-values in Figure 7. For higher values of �i, the
p-values decrease, and thus statistical support for the null hypothesis of a
good model fit declines. Likewise, joint significance tests do not support the
exclusion of additional regressors due to higher penalties. In particular,
newly deselected regressors are mostly significant (jointly with the selected
ones). This finding is confirmed by the Bayesian Information Criterion (BIC)
for quantile models proposed by Lee, Noh, and Park (2013). As shown in
Figure 7, the BIC is increasing, indicating a less favorable model when the
penalty parameter is increased. These evaluations support our choice of
penalization and indicate that there is no evidence of a tendency to overfit
the tails.

3.3.c Network characteristics

In addition to providing a graphical illustration, standard network charac-
teristics provide a more comprehensive picture of the interconnectedness and
the role of each network node in the system. In Figure 8, we depict firms’
pagerank coefficient (see Brin and Page (1998)), a measure that does not
simply count links but empirically weights their importance in an iterative
scheme.21 Confirming the visual impression based on Figure 3, the most
connected firms are Lincoln National Corporation, AON, Bank of
America, TD Ameritrade, and Morgan Stanley. The graph also illustrates
our above finding that depositories tend to have somewhat stronger network
effects than other industry groups. Insurance companies divide into a group
of highly connected firms, such as Lincoln National Corp., AON and MBI,
and a group of less connected companies, such as AIG, Humana Incorp.,
Unum Group (UNM), and Cincinnati Financial Corp.
The degree of firms’ interconnectedness and the specific topology of the

network allow for the identification of possible risk channels in the system.
Pagerank coefficients, like other network metrics, however, can only be used

20 Increasing the penalties beyond 20% is not advisable because, for some VaRs, no
regressors are selected anymore.
21 The idea is to assign to each node (i.e., company) a weight that is increasing in the

number of connections with other nodes and the relative importance thereof. The more
connected a firm is, the greater is its importance and thus the greater is the importance of
its neighbor. The computation of the pagerank coefficient can be viewed as an eigenvalue
problem that can be solved iteratively. For more details, see Berkhin (2005).
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to assess the local impact and centrality of firms in the network but do not
allow for a full quantitative assessment of the systemic relevance of a finan-
cial institution. To address the latter issue, we propose the concept of
(realized) systemic risk beta, presented in the following section.
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Figure 8. The upper figure displays pagerank coefficients based on the estimated tail risk
network, computed as in Berkhin (2005), with institutions ordered by sector. Below,
pagerank coefficients are plotted against realized systemic risk contributions measured
as average realized systemic risk betas according to (8) for all companies classified as sys-
temically relevant, according to Subsection 4.3, for the years 2000–08. The regression line
shows only a small correlation between the pagerank coefficent and the realized systemic
risk beta, a conclusion supported by the R2 value of 0.0265. Colors and acronyms are as in
Figure 3.
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4. Quantifying Systemic Risk Contributions

4.1 MEASURING AND ESTIMATING SYSTEMIC RISK BETAS

In addition to valuable information on financial network structures, super-
visory authorities seek an accurate but parsimonious measure of an institu-
tion’s systemic impact. We quantify the latter as the effect of a marginal
change in the tail risk of firm i on the tail risk of the system, given the
underlying network structure of the financial system. Similarly to a firm’s
tail risk, as measured in Equation (1), system tail risk is measured as the
Value-at-Risk VaRs

p, t of the system return Xs
t , conditional on VaRi

q, t and
other control variables. We then define the systemic risk beta as the marginal
effect of firm i’s VaR on the system VaR given by

@VaRs
p, tðV

ðiÞ
t ,VaRi

q, tÞ

@VaRi
q, t

¼ �sjip, q, ð7Þ

where V
ðiÞ
t are firm-specific control variables.22 The systemic risk beta can be

interpreted by analogy with an inverse asset pricing relationship in quantiles,
where bank i’s q-th return quantile drives the p-th quantile of the system,
given network-specific effects and firm-specific and macroeconomic state
variables. We classify the systemic relevance of institutions according to
the statistical significance of �sjip, q at a given level and magnitude of their
total effects

��sjip, q :¼ �sjip, qVaR
i
t, ð8Þ

which we refer to as the realized systemic risk contribution. In contrast to the
marginal systemic risk beta, the realized system risk beta captures the full
partial effect of an increase in VaRi on VaRs

t and is thus cross-sectionally
comparable across banks.
Producing unbiased estimates of a firm’s marginal effect �sjip, q requires ac-

counting for i-specific control variables in (7). Consequently, for each
company i, we estimate an individual quantile regression of VaRs of the form

VaRs
p, t ¼ V

ðiÞ
t

0
�sp þ �

sji
p, qVaR

i
q, t, ð9Þ

where the vector of regressors VðiÞt ¼ ð1,M0t�1,VaR
ð�iÞ0

q, t Þ
0 includes a constant

effect, lagged macroeconomic state variables and the VaRs of all companies

22 We only study immediate effects of risk shocks of company i on the system and do not
infer further steps. The latter would require additional dynamic modeling, which is beyond
the scope of this analysis.
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that are identified as risk drivers for firm i in Section 3. The resulting spe-
cifications are parsimonious, as they contain the minimum set of variables
V
ðiÞ
t that are necessary but sufficient to guarantee unbiased estimates of

�sjip, q.
23 Therefore, variables unrelated to VaRi do not affect firm i’s

systemic risk contribution and can be omitted.24 We view this approach as
a tractable alternative to a structural equilibrium model, which would
require us to address involved specification issues. In addition, even if the
latter model were correctly specified, it would yield imprecise estimates due
to the high dimensionality and interconnectedness of the financial system,
given limited data availability.
Systemic risk betas in (9) are allowed to be time-varying, accounting for

periods of turbulence in which not only banks’ risk exposures change, but
also their marginal importance to the system may vary. We model potential
time variations of �sji, using a linear model in lagged observable factors,
Zi

t�1, which characterize a bank’s propensity to experience financial distress,

�sjip, q, t ¼ �
sji
0, p, q þ Zi

t�1
0	sjip, q, ð10Þ

where 	sjip, q are parameters. Including Zi in lagged form renders systemic risk

betas predictable, which is important for forward-looking monitoring and

supervision of the financial system. Imposing linearity on �sjip, q, t in Zi
t�1 yields

stable estimates, given that these factors are updated only quarterly.25

The time-varying systemic risk betas �sjip, q, t are estimated using (9) and (10),

with the (unknown) VaR quantities VaRi
t and VaR

ð�iÞ
q, t replaced by the cor-

responding (post-LASSO) pre-estimates dVaRi
t and dVaRð�iÞq, t from (6).26

Hence,

23 Controlling for the relevant VaRs of other companies precludes simultaneity issues

related to potential effects of VaRs on VaRi. Therefore, any remaining “reverse causality”
can only stem from i-specific risk drivers that are not part of our sample but are constitu-
ents of the financial system portfolio. While this possibility cannot be completely neglected,

given the composition of our sample, the remaining companies tend to be relatively small
and unimportant. It thus appears quite unlikely that reverse causality may arise through
this channel.
24 See Angrist, Chernozhukov, and Fernández-Val (2006) for a simple Frisch–Waugh type
argument in quantile regressions.
25 More flexible functional forms (see e.g., Fan et al., 2013) would substantially increase

the computational burden and are not easily tractable, given the available data.
26 Note that a direct one-step estimation is not feasible, as the individual parameters �sji0, p, q

and 	sjip, q could not be identified without the additional identification condition

Qqð"
i
tjW

ðiÞ
t Þ ¼ 0, implicitly bringing back the first-step estimation and model selection step.

Moreover, inserting the linear individual VaR (2) into the linear sytem VaR model (9) yields
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Xs
t ¼ ��

sji
0, p, q

dVaRi
q, t � ð

dVaRi
q, t � Z

i
t�1Þ
0	sjip, q �

d
V
ðiÞ
t

0
�sp þ "

s
t , ð11Þ

where Qpð"
s
tj
dVaRi

q, t,
bVðiÞt ,Zi

t�1Þ ¼ 0. As in Section 3, estimates of all compo-

nents of �sjip, q, t are obtained via a quantile regression minimizing

1

T

XT
t¼1

�p Xs
t þ B

ðiÞ
t

0
�s

� �
ð12Þ

in the unknown parameters �s, with B
ðiÞ
t � ðVaR

i
t,VaR

i
t � Z

i
t�1
0,B
ðiÞ
t

0
Þ
0. The

resulting estimate of the full time-varying marginal effect �̂sjip, q in (10) is

then given by

�̂sjip, q, t ¼ �̂
sji
0, p, q þ Zi

t�1
0d	p, q

sji, ð13Þ

for given values Zi
t�1. Constant systemic risk betas occur as a special case

under the restriction 	sjip, q ¼ 0, yielding �̂sjip, q, t ¼ �̂
sji
0, p, q ¼ �̂

sji
p, q. An estimate of

the realized beta (8) is obtained as �̂�
sji

p, q, t :¼ �̂sjip, q, t
dVaRi

t.

The fact that certain regressors are not observed but only pre-estimated
has crucial consequences for statistical inference. The quantile regression
asymptotic standard errors obtained with commonly used software
packages based on Koenker and Bassett (1978) are generally too small, as
they do not account for the pre-step. In contrast to mean regressions, such
two-step results are nonstandard in a quantile setting and are therefore
provided in detail in (A.3) in the Appendix. To the best of our knowledge,
these are new to the literature.

4.2 DETERMINING SYSTEMIC RELEVANCE

We determine a firm’s systemic relevance and the potential time variation
thereof via formal statistical significance tests. As quantile versions of
asymptotic t- or F-tests are not valid in finite samples, and simple direct
bootstrap adaptations yield incorrect results for quantiles,27 we perform

a full model of the system’s tail risk in observable characteristics. Model selection based on

such a full model, however, is infeasible because correlation effects among the large number
of regressors would produce unreliable results.
27 Generally, asymptotic distributions often only provide a poor approximation of the true

distribution of the (scaled) difference between the estimator and the true value when sample
sizes are not sufficiently large. In the case of quantile regressions, this effect is even more
pronounced, as valid estimates of the asymptotic variance have poor nonparametric rates
and thus require even larger sample sizes to obtain the same precision.
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finite-sample inference for a linear hypothesis H on �sjip, q, t 2 �
s based on the

test statistic

ST ¼ min
�sunderH

XT
t¼1

�pðX
s
t þ B

ðiÞ
t

0
�sÞ � min

�sunrestricted

XT
t¼1

�pðX
s
t þ B

ðiÞ
t

0
�sÞ, ð14Þ

where B
ðiÞ
t is as defined above, and �s denotes the corresponding parameter

vector.28 Note, however, that the asymptotic distribution of ST involves
unknown terms, so that a bootstrap procedure is needed. Conventional
resampling techniques remain inconsistent for ST, due to the nonsmooth
objective function of the quantile regression. However, we can construct
an adjusted “wild-type” bootstrap method that yields valid inference.
This is described in detail in the Appendix (compare Chen et al., 2008).
For all tests below, we generally consider effects significant if p-values are
below 10%.
We define a company as systemically relevant if an increase in its potential

loss position, given economic state variables and i-specific risk inflows from
other companies, entails significantly higher potential systemic loss. This
requires that its systemic risk beta is significant and nonnegative.29

Accordingly, we test for the joint significance of all components of �sjit ,
using the hypothesis

H1 : �sji0 ¼ 	
sji
MMM ¼ 	

sji
SIZE ¼ 	

sji
LEV ¼ 	

sji
BM ¼ 	

sji
VOL ¼ 0:

Testing whether marginal effects on the system are indeed time-varying in
firm-specific characteristics implies the joint hypothesis

H2 : 	sjiMMM ¼ 	
sji
SIZE ¼ 	

sji
LEV ¼ 	

sji
BM ¼ 	

sji
VOL ¼ 0:

If H2 is not rejected, we re-specify the systemic risk beta as a constant
(�sjit ¼ �

sji), re-estimate the model without interaction variables, and test
the hypothesis H3 : �sji ¼ 0.

28 This test is an adaptation to the quantile setting of a method proposed by Chen et al.
(2008) for median regressions.
29 Because we do not impose a priori nonnegativity restrictions, systemic risk betas can
become negative at certain points in time. In a few cases, we can attribute these effects to
sudden time variations in one of the (interpolated) company-specific characteristics Zi

t�1,

driving systemic risk betas temporarily into the negative region. These effects might be
reduced by linking �sji in (10) to (local) time averages of Zi

t�1, which would stabilize
systemic risk betas at the cost of a potentially substantial loss of information. We see
this as an alternative approach. However, we do not pursue it in the present context.
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4.3 EMPIRICAL RESULTS AND ROBUSTNESS OF SYSTEMIC RISK BETAS

We estimate systemic risk betas according to the approach described
in Section 4.1, based on q ¼ 0:0530 and using all firm-specific characteris-
tics as potential drivers of time-variation in systemic risk betas, that is,
Zi

t ¼ Ci
t. As a consequence, systemic risk contributions of two

companies with the same exposure to macroeconomic risk factors and
financial network spillovers may still differ due to their balance sheet
structures.31

Table IV reports the p-values of the test described in Section 4.2, which is
performed using the wild bootstrap procedure (illustrated above (A.9) in the
Appendix), based on 2,000 re-samplings of the test statistic.32 We find that
the majority of firms have a significant time-varying systemic risk beta.
Conversely, for approximately 25% of the firms, systemic risk betas are
insignificant. Table V ranks all systemically relevant companies for the
period from 2000 to 2008, according to their average realized systemic risk

contributions �̂�
sji
. The systemically most risky companies are found to be JP

Morgan, American Express, Bank of America, and Citigroup. According to
our network analysis above, these firms are strongly interconnected and thus
should be closely monitored. Realized systemic risk betas, however, contain
information on systemic relevance beyond a company’s network intercon-
nectedness. This is illustrated in Figure 8, which reveals only slightly positive
dependencies between pagerank coefficients and realized systemic risk betas.
With an R2 of just 2%, this relationship, however, is not very strong.
Hence, firms’ interconnectedness is not sufficient to assess their systemic
relevance.
As a first rough validity benchmark of our assessment, we compare our

results with the outcomes of the Supervisory Capital Assessment Program
(SCAP), conducted by the Federal Reserve in the spring of 2009, just after
the end of our sample period. While we rely exclusively on publicly available
market data, the Fed could draw on extensive nonpublic confidential
balance sheet information that reveals credit and other risk interconnection
channels among the ninteen largest US bank holding companies.33 The

30 As we set p¼ q, we suppress the quantile index.
31 Note that we keep the set of regressors M parsimonious, as described in Section 2.2 and
justified in Subsection 3.3.a.
32 Because of multicollinearity effects, the interpretation of individual coefficients Z might

be misleading. Therefore, we refrain from reporting corresponding estimates.
33 For details on SCAP, see Federal Reserve System (2009). To determine requested indi-
vidual capital buffers under different market scenarios, the Fed’s measure of systemic rele-
vance uses proprietary information regarding risk interconnections. According to Huang,
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Table IV. Classification of companies with significant and/or time-varying systemic risk

betas according to p-values of the corresponding significance tests

In all cases, the test level is taken as 10% and firms are in alphabetical order within each
category. P-values pH1 for the test on significance of systemic risk betas in the time period
2000–08 are depicted in column one (see Hypothesis H1 in Section 4.3). If �̂sji is detected as

being significant, a second test on time-variation of �̂sji in firm-specific characteristics Zi
t is

performed yielding p-values pH2 (see Hypothesis H2 in Section 4.3). For firms with a sig-
nificant but not a time-varying systemic risk beta (lower panel on the left, marked with

stars), we reestimate the systemic risk beta without time-varying interaction terms and test
again for its significance. These results (pH3) are included in parentheses in the second
column (see Hypothesis H3 in Section 4.3).

Companies with significant �sji

Name pH1 pH2

AMERICAN EXPRESS 0.001 0.006

AMERICAN INTL.GP. 0.002 0.000

BANK OF AMERICA 0.002 0.001

CHARLES SCHWAB 0.019 0.013

CHUBB 0.017 0.015

CIGNA 0.001 0.013

CINCINNATI FINL. 0.010 0.004

CITIGROUP 0.026 0.066

COMERICA 0.016 0.020

FANNIE MAE 0.001 0.000

FIFTH THIRD BANCORP. 0.039 0.021

FRANKLIN RESOURCES 0.028 0.030

FREDDIE MAC 0.098 0.092

HARTFORD FINL.SVS.GP. 0.001 0.001

HUDSON CITY BANC. 0.043 0.035

HUNTINGTON BCSH. 0.010 0.011

LEGG MASON 0.026 0.060

LEUCADIA NATIONAL 0.041 0.016

LINCOLN NAT. 0.062 0.026

M & T BK. 0.033 0.021

MARSH & MCLENNAN 0.003 0.002

MARSHALL & ILSLEY 0.020 0.019

MORGAN STANLEY 0.041 0.095

PNC FINANCIAL SVS. GP 0.012 0.012

PROGRESSIVE OHIO 0.007 0.003

REGIONS FINANCIAL 0.034 0.029

STATE STREET 0.054 0.049

T ROWE PRICE GP. 0.090 0.076

TORCHMARK 0.002 0.001

UNION PACIFIC 0.040 0.035

UNUM GROUP 0.079 0.097

W R BERKLEY 0.007 0.037

WELLS FARGO & CO 0.015 0.027

(continued)
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financial institution with the most severe shortcomings with respect to
capital buffer, according to the SCAP, was Bank of America, which ranks
among our most highly systemically relevant companies, leading the ranking
in June 2008 (Table VI, Panel B). In addition, we identify six of eight banks
in our database that, according to the SCAP results, were threatened by
financial distress under more adverse market conditions.34 These results

Table IV. (Continued)

Companies with significant �sji

Name pH1 pH2

ZIONS BANCORP. 0.095 0.100

AON* 0.063 0.192 (0.135)

E TRADE FINANCIAL* 0.072 0.160 (0.233)

JP MORGAN CHASE & CO.* 0.014 0.237 (0.047)

NY.CMTY.BANC.* 0.040 0.132 (0.088)

SEI INVESTMENTS* 0.014 0.115 (0.025)

TD AMERITRADE HOLDING* 0.049 0.131 (0.188)

Companies with insignificant �sji

Name pH1

AFLAC 0.220

ALLSTATE 0.114

BANK OF NEW YORK MELLON 0.199

BB &T 0.120

CNA FINANCIAL 0.410

COVENTRY HEALTH CARE 0.257

EATON VANCE NV. 0.276

GOLDMAN SACHS GP. 0.667

HEALTH NET 0.371

HUMANA 0.189

LOEWS 0.276

MBIA 0.235

NORTHERN TRUST 0.305

PEOPLES UNITED FINANCIAL 0.105

SLM 0.391

SUNTRUST BANKS 0.213

SYNOVUS FINL. 0.289

Zhou, and Zhu (2010), the two network-based evaluations should be related, as companies
with the highest detected systemic relevance in 2000–08 should carry the highest shares of

hypothetical loss insurance premia. Consequently, they should face the highest requested
increases in individual capital buffers in 2009.
34 We detect Citigroup, FifthThird Bancorp, Morgan Stanley, PNC, Regions Financial,
and Wells Fargo as systemically relevant. Due to a lack of data, we cannot include in our
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confirm the usefulness of our approach in detecting systemically risky
companies and as a monitoring tool for supervisory agencies. For a
more detailed validity study, see the next section below. Additionally,

Table V. Ranking of companies according to average realized systemic risk betas over the

years 2000–08 Q3

Most systemic risk contributions are detected as time-varying in systemic risk

betas—exceptions with constant �̂�
sji

av are marked by �. The underlying significance tests

are performed as described in Table IV. The third column lists relevant risk drivers for

the corresponding firm within the systemic tail risk network. They are determined through
the LASSO selection technique (6) as “relevant” loss exceedances to be included in the
corresponding company’s VaRi-regression.

Rank Name �̂�
sji

av � 10
2 Influencing companies

1 JP MORGAN CHASE & CO 1.41* BAC,BK,C,GS,PNC,SCHW

2 AMERICAN EXPRESS 1.22 AFL,BAC,BBT,BEN,CINF,EV,L,SEIC,SLM,STT,

TROW

3 BANK OF AMERICA 1.01 AON,AXP,C,HBAN,LM,MS,MTB,PBCT,PNC,

SEIC,STI,WFC

4 CITIGROUP 0.87 BAC,ETFC,FITB,GS,JPM,LNC,LUK,MBI,MTB

5 LEGG MASON 0.83 AON,BAC,BEN,CINF,EV,GS,HNT,MBI

6 REGIONS FINANCIAL 0.72 AMTD,AON,BBT,FITB,HBAN,PBCT,STI,ZION,

7 MARSHALL & ILSLEY 0.65 MMC,TMK

8 MARSH & MCLENNAN 0.63 MI,NTRS,PGR,SEIC,TROW,UNM

9 MORGAN STANLEY 0.62 AIG,AON,BAC,EV,GS,HBAN,HCBK,MTB,SCHW,

SEIC,STT

10 AMERICAN INTL.GP. 0.61 FRE,MBI,RF,TMK

11 PROGRESSIVE OHIO 0.58 AFL,ALL,NTRS,WRB

12 STATE STREET 0.55 AXP,NTRS

13 ZIONS BANCORP. 0.51 BBT,CMA,HBAN,MTB,PNC,RF,STI,

14 FIFTH THIRD BANCORP. 0.49 AON,LUK,RF,SLM,SNV,STI,WFC,ZION

15 NY.CMTY.BANC. 0.49* PBCT,WFC

16 PNC FINANCIAL SVS. GP 0.47 BAC,CMA,STT,TMK,WFC,ZION

17 FANNIE MAE 0.45 AIG,FRE

18 FRANKLIN RESOURCES 0.34 AON,AXP,BBT,EV,GS,LM,MBI,NTRS,SLM,

SNV,TROW

19 CHARLES SCHWAB 0.33 AMTD,GS,JPM,NTRS,TROW

20 CHUBB 0.30 AFL,L,LNC,PBCT,PGR

21 WELLS FARGO & CO 0.28 BAC,BBT,CB,LNC,MTB,NYB,STI

22 FREDDIE MAC 0.19 BBT,EV,FITB,FNM,LUK

23 HARTFORD FINL.SVS.GP. 0.19 CB,L,LNC,MI,NTRS,TMK

24 CINCINNATI FINL. 0.16 CB,MBI,STI

25 TORCHMARK 0.12 AFL,ALL,BBT,HIG,LNC,NTRS,SEIC,UNM,UNP,

26 UNUM GROUP 0.04 AFL,ALL,L,LNC,MMC,STI

analysis KeyCorp and GMAC, which have also been found to be financially distressed in
critical macroeconomic environments.
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Table VI. Rankings of relevant systemic risk contributions

Rankings are based on estimated realized systemic risk betas �̂�
sji

t at two specific points in

time. In addition, estimated systemic risk betas and VaRs are listed, illustrating the different

sources of variation in �̂�
sji

t . Most systemic risk contributions are detected as being time-

varying in systemic risk betas—exceptions with constant �̂�
sji

t are marked by *. The

underlying significance tests are performed as described in Table IV.

Panel A: End of March 2007 (before the beginning of the financial crisis)

Rank Name �̂�
sji

2007 � 10
2 �̂sji2007

dVaRi
2007

1 CITIGROUP 1.78 0.263 0.068

2 AMERICAN EXPRESS 1.35 0.387 0.035

3 BANK OF AMERICA 1.16 0.304 0.038

4 JP MORGAN CHASE & CO. 1.05* 0.265 0.040

5 MORGAN STANLEY 1.01 0.146 0.069

6 LEGG MASON 0.98 0.205 0.048

7 MARSH & MCLENNAN 0.83 0.222 0.037

8 REGIONS FINANCIAL 0.78 0.202 0.038

9 PNC FINANCIAL SVS. GP 0.77 0.248 0.031

10 CHUBB 0.74 0.240 0.031

11 AMERICAN INTL.GP. 0.61 0.143 0.043

12 FRANKLIN RESOURCES 0.60 0.143 0.042

13 STATE STREET 0.51 0.114 0.045

14 FIFTH THIRD BANCORP. 0.50 0.104 0.048

15 PROGRESSIVE OHIO 0.42 0.092 0.046

16 NY.CMTY.BANC. 0.41* 0.090 0.045

17 MARSHALL & ILSLEY 0.40 0.088 0.045

18 TORCHMARK 0.39 0.173 0.023

19 HARTFORD FINL.SVS.GP. 0.38 0.099 0.039

20 ZIONS BANCORP. 0.26 0.115 0.054

21 CHARLES SCHWAB 0.25 0.042 0.060

22 FREDDIE MAC 0.23 0.057 0.041

23 LEUCADIA NATIONAL 0.19 0.057 0.033

24 CINCINNATI FINL. 0.13 0.026 0.050

25 FANNIE MAE 0.09 0.019 0.049

26 UNUM GROUP 0.23 0.045 0.051

27 T ROWE PRICE GP. 0.06 0.014 0.043

28 LINCOLN NAT. 0.04 0.010 0.036

Panel B: End of June 2008 (during the financial crisis)

Rank Name �̂�
sji

2008 � 10
2 �̂sji2008

dVaRi
2008

1 BANK OF AMERICA 2.86 0.186 0.154

2 AMERICAN EXPRESS 2.78 0.278 0.100

3 WELLS FARGO & CO 2.51 0.186 0.135

4 MARSHALL & ILSLEY 2.31 0.516 0.045

5 JP MORGAN CHASE & CO. 2.22* 0.265 0.084

6 PROGRESSIVE OHIO 1.97 0.380 0.052

7 LEGG MASON 1.96 0.137 0.143

(continued)
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statistical robustness checks of an adapted realized systemic risk beta in a
forecasting setting are provided in Hautsch, Schaumburg, and Schienle
(2014).
To illustrate the time evolution of systemic risk betas, we show systemic

risk rankings at two selected points in time: Table VI (Panel A) provides the
systemic risk ranking for the last week of March 2007, which was a relatively
“calm” time before the start of the financial crisis. Table VI (Panel B), on the
other hand, shows the ranking at the end of June 2008, shortly before the
collapse of Lehman Brothers. Comparing the precrisis and crisis rankings,
we observe that systemic risk betas generally increased during the crisis, a
trend that is particularly pronounced for American Express, Bank of
America, JP Morgan, Regions Financial, and State Street. Exceptions are
Citigroup and Morgan Stanley.
During the crisis, we detect Bank of America (BAC) as systemically most

relevant. Among all systemically relevant companies, it is also the most
interconnected firm, according to the pagerank coefficient in Figure 8,
mutually influencing and influenced by other companies in the center of
the network (Table III). Figure 9 shows that BAC’s systemic risk beta was
relatively stable before the financial crisis but fell significantly following
implementation of the Federal Reserve’s rescue packages. Its realized
systemic risk contribution, however, strongly increased during the crisis,

Table VI. (Continued)

Panel B: End of June 2008 (during the financial crisis)

Rank Name �̂�
sji

2008 � 10
2 �̂sji2008

dVaRi
2008

8 REGIONS FINANCIAL 1.86 0.107 0.173

9 MARSH & MCLENNAN 1.76 0.471 0.037

10 STATE STREET 1.44 0.171 0.084

11 NY.CMTY.BANC. 1.12* 0.090 0.125

12 PNC FINANCIAL SVS. GP 1.09 0.153 0.071

13 CHUBB 1.07 0.176 0.061

14 TORCHMARK 1.00 0.177 0.057

15 CHARLES SCHWAB 0.91 0.149 0.060

16 CITIGROUP 0.90 0.072 0.124

17 MORGAN STANLEY 0.61 0.074 0.083

18 ZIONS BANCORP. 0.58 0.058 0.100

19 UNUM GROUP 0.34 0.033 0.104

20 UNION PACIFIC 0.27 0.047 0.056

21 HARTFORD FINL.SVS.GP. 0.24 0.012 0.201

22 FRANKLIN RESOURCES 0.17 0.026 0.064

23 T ROWE PRICE GP. 0.01 0.001 0.102
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a development that can mainly be attributed to network effects.35 This is, for
instance, in contrast to AIG, where network effects entering through in-
creases in other firms’ VaR’s play a secondary role during the crisis
period. AIG’s systemic relevance, however, rapidly declined from the begin-
ning of 2008 until its government bailout (Figure 9). Here, market data
appear to have incorporated bailout information into the systemic risk
beta well in advance, making both systemic risk betas and realized betas
appear to be forward-looking.36

By construction, realized systemic risk contributions vary over time
through both �sjit and VaRi

t. For selected companies, these effects are sche-
matically depicted before and during the crisis in Figure 2 in the
Introduction. As for BAC, in many cases, as shown in Table VI, we
observe increases of realized systemic risk contributions that are mainly
due to rising individual VaRs, while companies’ marginal contributions to
the system VaR generally remain unchanged (see, e.g., American Express).
In most of these cases, the strong increase in VaR can mainly be attributed to
tail risk spillovers in the network (see also Table II).
In several cases, increasing individual VaRs coincide with rising sys-

temic risk betas. The most pronounced effect can be observed for Wells
Fargo, which was not even identified as systemically relevant in 2007 but
subsequently experienced a dramatic increase in both its systemic risk
beta and its idiosyncratic tail risk, rendering it highly systemically risky in
2008. Other examples include State Street, Progressive Ohio, and Marshall &
Isley. Here, direct sources of increasing systemic relevance can only be par-
tially found in the network structure (see, e.g., State Street, which does
not face significant risk spillovers from other companies but has high
systemic relevance). For two central nodes in the network, Citigroup,
and Morgan Stanley, however, declining systemic risk betas overcompen-
sate for increasing VaRs, resulting in overall declining systemic
relevance. Similarly to AIG, for these firms, network effects play a minor
(direct) role.
The above results show that realized systemic risk contributions conveni-

ently condense information on banks’ systemic importance, although the
underlying forces driving variations in banks’ systemic relevance can be
quite different. Therefore, simultaneously analyzing and monitoring (i)
network effects, (ii) sensitivity to micro- and macroeconomic conditions,

35 The detailed BAC results for the post-LASSO coefficients in Table 2 are omitted for the
sake of brevity but are available upon request.
36 For details on the USD 150 billion rescue packages from the Federal Reserve, see Schich
(2009).
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and (iii) time-variations in systemic risk betas provides a complete picture of
companies’ specific roles in the network and thus builds a solid basis for
supervisory authorities to monitor systemic risk.

5. Model Validation

5.1 A SIMPLISTIC BENCHMARK

In this subsection, we illustrate the advantage of our two-step quantile re-
gression approach compared with a one-step estimation of a “global” model
of the system VaR. Under the two-step approach, we model the system VaR
as a function of all companies’ loss exceedances and the set of macroeco-
nomic state variables37, that is,

VaRs
p, t ¼ 


s
1 þ E

ðsÞ0

t 

s
2 þM

ðsÞ0

t�1

s
3, ð15Þ

where E
ðsÞ
t and M

ðsÞ
t�1 are sets of loss exceedances and macroeconomic indi-

cators, respectively, selected by the LASSO method. Positive values of the
unkonwn quantile-specific coefficients ð
s1, 


s0
2 ,
s03 Þ

0 indicate the degree of
systemic relevance of each firm. We use an adaptive version of the LASSO
procedure in (15), employing regressor-specific weights in the penalty.38 This
makes the procedure comparable to the use of firm-specific LASSO penalties
in our two-step procedure.
Figure 10 summarizes how the group of systemically relevant companies

identified by the simplistic benchmark estimation compares with that
determined by the two-step approach reported in Table V.39 First, there is
considerable overlap of companies—mostly large depositories and insurance
companies (Group 1)—found to be systemically relevant under both

37 LASSO selection in a global system VaR model, based on all institutions’ pre-estimated
VaRs, would yield imprecise results due to the vast amount of pre-estimated regressors and

inherent multicollinearity effects. We therefore do not include individual (pre-estimated)
VaRs but loss exceedances.
38 The adaptive LASSO criterion thus minimizes 1

T

PT
t¼1 �q Xs

t þ 
1 þ E0t
2 þM0t�1
3
� �

þ

�

ffiffiffiffiffiffiffiffiffiffi
qð1�qÞ
p

T

P65
k¼1 wk�̂kj
kj. The weights wk are computed as inverses of the absolute values

of coefficients from an unrestricted quantile regression, �̂k is as in (6), and � is determined
as in Section A.2, where c is chosen via the in-sample VaR backtest of Berkowitz,
Christoffersen, and Pelletier (2011) (see Section A.3). For details on the adaptive LASSO,

see Wu and Liu (2009).
39 In the benchmark case, the change in the short-term interest rate (yield3m) was also used
as a regressor, in addition to the selected exceedances. The detailed results with the coef-
ficients obtained are available from the authors upon request.
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methods. In particular, 17 of 21 loss exceedances are selected under both
approaches. Four remaining firms are identified as relevant only in the
benchmark case (Group 2). These firms are relatively small companies
that appear to be “overweighted” under the simplistic approach. The fact
that they have been selected may indicate a spurious effect due to co-move-
ments with others. The third group of companies comprises firms that are
not identified as systemically relevant in the benchmark case but nevertheless
have significant positive systemic risk betas. Almost all of these are deeply
interconnected with other companies (Table III).40 Hence, a one-step
approach to determining the system VaR (15) may provide only a rough
tool that can be used to gain a first impression of systemically relevant firms
in a moderately interconnected system. However, as this approach cannot
capture network linkages, it tends to systematically falsely reject systemic
relevance of firms that gain importance mainly through their positions
within the network. Conversely, it is likely to falsely attribute systemic rele-
vance to firms with insignificant marginal effects when controlling for the
network.

AXP, CB, CMA, FITB, 
HBAN, HIG, MMC,
MS, TMK, UNM, 
WFC, ZION

BAC, BEN, C, CINF, 
FNM, JPM, LM, LNC, 
LUK, MI, NYB,
PGR, RF, SCHW, SEIC, 
STT, TROW

AIG, FRE, PNC

BBT, 
ETFC, 
EV, 
PBCT

Figure 10. The schematic figure depicts companies classified as systemically relevant, ac-
cording to our two-step network technique, in comparison with a simplistic one-step model,
with exceedances based on LASSO for (15). Companies in the dotted area are selected by
the simplistic model as systemically relevant, while firms in the gray area have a significant
systemic impact in our network model, according to Table IV. Denote the overlay region as
Group 1, which includes companies whose tail risks are determined as relevant to the
system’s risk in both settings. Group 2 comprises companies in the dotted but nongray
area selected only by the simplistic model. Systemically relevant firms in the gray nondotted
region can be classified as either Group 3, as they are deeply interconnected with other
companies through more than six links, according to Table III (upper larger only gray set in
the figure), or as Group 4, with few but crucial risk links, according to Table III (lower only
gray set in the figure with three elements).

40 We categorize a company as deeply connected if it has six or more incoming and/or
outgoing risk links in Table III.
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5.2 CASE-STUDY: PRECRISIS PERIOD

The above study is based on data available over the entire period from the
beginning of 2000 to the end of 2008. Consequently, institutions that de-
faulted or were taken over by other firms are not included. Nevertheless, to
validate our findings, we perform a case study by reestimating the model for
the time period of January 1, 2000, to June 30, 2007 and including the in-
vestment banks Lehman Brothers and Merrill Lynch.
The use of a shorter estimation period (and thus less data) renders a sharp

ranking of companies less distinct and more difficult to interpret. Therefore,
Table VII categorizes firms into groups according to quartiles of the distri-
bution of realized systemic risk betas. The group of highest systemic import-
ance consists of AIG, Lehman Brothers, Morgan Stanley, JP Morgan, and
GS, among others. “Medium” systemic riskiness is observed for large
depositories and investment banks, including Bank of America, Merrill
Lynch, Citigroup, and Regions Financial and also for the mortgage
company Freddie Mac.
In this case study, we focus particularly on four companies that were

massively affected by the crisis: Lehman Brothers became insolvent on
September 15, 2008 and was subsequently liquidated. Merrill Lynch
announced a merger with Bank of America in September 2008, which was
executed on January 1, 2009. Freddie Mac is closely connected to the second
largest real estate financing company Fannie Mae and was placed under

Table VII. Group ranking of systemic risk contributions for the precrisis period 2000 to

mid 2007

The upper part, Group 1 (“high”), contains companies with significant average realized

systemic risk betas in the highest quartile: �̂�
sji

av � 100 2 ½0:5, 1:3�. Group 2 refers to the third

quartile (“medium”) with �̂�
sji

av � 100 2 ½0:03, 0:49� and Group 3 to realized systemic risk betas

lower than the median value (“small”), for which �̂�
sji

av � 100 < 0:01. Group 4 includes

companies not determined to be systemically risky during the estimation period, that is,

those with insignificant systemic risk betas. Case study companies are marked in bold.

Systemic risk contributions Companies

Group 1 “high” AIG, LEH, MS, JPM, GS, STT, CINF, LM, PBCT

Group 2 “medium” FRE, ML, BAC, C, RF, AXP, PNC, CNA, TROW, NTRS

Group 3 “low” FNM, WFC, EV, TMK, BBT, AFL, HUM, MI, CMA, BK,

LNC, ALL, HNT, CB, CVH, SLM, ETFC

Group 4 AMTD, AON, BEN, CI, FITB, HBAN, HCBK, HIG, L, LUK,

MBI, MMC, MTB, NYB, PGR, SCHW, SEIC, SNV, STI, UNM,

UNP, WRB, ZION
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conservatorship by the US government during the financial crisis. Finally,
we investigate the systemic riskiness of AIG, which faced major distress
during the crisis and whose bailout was very costly to tax payers. As
shown in Table VII (with the specific companies marked in bold), all of
these firms belong to the group of systemically relevant firms with high or
mid-sized average systemic risk betas.
Table VIII summarizes the results of the network analysis of these four

companies, using precrisis data only. We observe that most of these institu-
tions were subject to loss spillovers from direct competitors. Observe, for
example, the strong interconnectedness of AIG, the mutual link between
Freddie Mac and Fannie Mae and the dependencies between Lehman
Brothers and both MS and GS.
Figure 11 shows the time evolution of the realized betas of the four

companies under investigation. The exemplary case of Merrill Lynch
shows that, over a longer time horizon, the network-based idiosyncratic
VaR gradually decreased, despite the firm’s increasing systemic importance,
with its realized risk beta rising by more than 100% between mid-2006 and
mid-2007. Moreover, Figure 12 shows that the overall high systemic rele-
vance of Lehmann and AIG can be attributed to very different time evolu-
tions of their realized systemic risk betas well in advance of the crisis. While
the systemic relevance of Lehman brothers grew almost monotonically
toward the beginning of the crisis, the realized beta of AIG was already

Table VIII. Summary of estimation and test results for the four case study companies: loss

exceedances influencing each company’s VaR, the most important other VaRs influenced,

joint significance tests on �sjit ¼ 0 and estimated average systemic risk contributions as well

as betas

aTime-varying betas.

Estimation period: January 2000 to June 2007

Name Influenced by Mainly influencing

Overall

sign.

Average
�̂�
sji

t � 100

Average

�̂sjit

FRE AON, BBT, EV, FITB,

FNM, HUM, MBI

BBT, FNM 0.048 0.38 0.092a

ML AMTD, CB, CNA, HCBK,

L, NYB, WRB

C 0.051 0.03 0.030a

LEH AMTD, AON, BEN, GS, JPM,

LM, LUK, MI, MS

AIG, AXP, ETFC, JPM 0.041 0.79 0.176a

AIG ALL, C, CB, CNA, ETFC, HIG,

LEH, LNC, MBI,

AFL, C, CNA, HIG, 0.026 0.73 0.210a

MMC, SCHW, STT, TMK HUM, MMC, UNM
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high around 2005. At this time, the company was already highly leveraged
and was even downgraded. If we compare our results to the findings pre-
sented in Table IV (page 45 in the Appendix) of Brownlees and Engle (2012),
according to their SRISK measure, they also find systemic relevance of
LEH, FRE, and ML. In contrast to their results, however, our measure
appears to incorporate important market information substantially more
quickly, thus providing a better forward-looking monitoring tool.
Similarly, the high systemic relevance of JPM before the crisis is detected
by SRISK with a significant time delay.
Our findings clearly show that, in June 2007, all four companies were

relevant to the stability of the US financial system. They indicate that
bailouts during the crisis were justified for Freddie Mac (and the closely-
tied Fannie Mae) and AIG. In addition, a failure of Merrill Lynch would
have had harsh systemic consequences that could be prevented by its merger
with Bank of America in 2008. Second, the increasing systemic importance
of Lehman Brothers could have been monitored, and thus, the impact of its
bankruptcy could have been anticipated in some degree. The direct
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Figure 11. Time evolution of systemic importance for all companies in the focus of the case
study. The left column of the panel depicts quarterly averaged realized systemic risk betas
of AIG, Freddie Mac (FRE), and Lehman Brothers (LEH) during the period immediately
preceding the crisis. The right column shows quarterly averaged realized systemic risk betas
of Merrill Lynch (ML) for the longer time period from 2004 onward in comparison with its
VaR.
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bidirectional linkage of Lehman Brothers to JP Morgan as well as the con-
nections to MS and GS, which in turn are deeply interconnected, indicate a
high risk of contagion in the event of Lehman’s failure. Furthermore, our
estimates show that Lehman’s systemic risk contribution is only slightly
lower than that of AIG, while it is substantially higher than that of, for
example, Freddie Mac. Given these results, bailing out the latter but not
the former is not necessarily justifiable from a systemic risk management
point of view.

6. Conclusion

The global financial crisis of 2007–09 has demonstrated the need for an
improved understanding of systemic risk. Particularly in situations of
distress, it is the interconnectedness of financial companies that plays a

Lehman Brothers
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Figure 12. Time evolution of systemic importance in terms of quarterly realized systemic
risk betas in 2004–07 for two companies, AIG and Lehman Brothers (LEH), which are
among the most systemically risky companies. We depict quarterly averages, reflecting
quarterly observations of balance sheet characteristics, smoothing the exceedance effects
in the VaR’s.
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major role but challenges quantitative analysis and the construction of ap-
propriate risk measures.
In this article, we propose a measure of firms’ systemic relevance that

accounts for dependence structures within the financial network, given
market externalities. Our analysis allows us to statistically identify relevant
channels of potential tail risk spillovers between firms, where such channels
constitute the topology of the financial network. Based on these relevant
company-specific risk drivers, we measure a firm’s idiosyncratic tail risk by
explicitly accounting for its interconnectedness with other institutions. Our
measure of a company’s systemic risk contribution quantifies the impact on
the risk of distress of the system as a whole induced by an increase in the risk
of an individual company in a network setting. Both measures exclusively
rely on publicly observable balance sheet and market characteristics and can
thus be used in prudent supervisory decisions in a stress test scenario.
Our empirical results show the interconnectedness of the US financial

system and clearly mark channels of relevant potential risk spillovers. In
particular, we classify companies into major risk producers, transmitters,
or recipients within the system. Moreover, at any specific time, firms can
be ranked according to their estimated contribution to systemic risk, given
their roles and positions in the network. Monitoring companies’ systemic
relevance over time thus allows us to detect those firms that are most central
to the stability of the system. In a case study, we highlight that our approach
could have served as a solid basis for a sensible forward-looking monitoring
tool before the start of the financial crisis in 2007.
Our approach is readily extendable in several directions. In particular,

although the financial system is dominated by the USA, it truly is a global
business with many firms operating internationally. Detecting inter- and
intra-country risk connections and measuring firms’ global systemic rele-
vance should be straightforward under our proposed methodology.
Moreover, whenever additional (firm-specific or market-wide) information
becomes available, as, for example, when new information is reported
to central banks, it can be directly incorporated into our measurement pro-
cedure. The data-driven selection step of relevant risk drivers then deter-
mines whether and how such information would increase the precision of
results.
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Appendix

ECONOMETRIC METHODOLOGY

Asymptotic results for two-step quantile estimation

Under the adaptive choice of the penalty parameter, as described in the text,

the LASSO selection method is consistent with rate OP

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðiÞ
T logðmaxðK,TÞ

q �
and with high probability the coefficients selected from W contain the true
coefficients in finite samples. These results follow directly from Belloni and
Chernozhukov (2011). Furthermore, VaRi is consistently estimated, using
the post-LASSO method described in the text, which reestimates the

unrestricted model with WðiÞ. In particular, for all q 2 I, with I 2 ð0, 1Þ
compact,

b�iq � �iq � OP

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðiÞ

T
logðmaxðK,TÞÞ

r !
, ðA:1Þ

as, in our setting, it is safe to assume that the number of wrongly selected
components of W is stochastically bounded by the number K(i) of
components of W contained in the true model of VaRi (see equation (2.16)
in Belloni and Chernozhukov (2011)). Slightly abusing notation, we write
YT � OPðrTÞ, with YT either OPðrTÞ or even oPðrTÞ for any random sequence
YT and deterministic rT! 0. Note that, in general, for T!1, both K and
K(i) might grow only very slowly in T, such that they can be treated nearly as

constants, implying the standard oracle bound OPð

ffiffiffiffiffiffiffiffiffi
logðTÞ
T

q
Þ in (A.1).

If the true model is selected, we find, for the asymptotic distribution of the
individual VaR estimates for any q 2 ½0, 1�, 41ffiffiffiffi

1

T

r b�iq � �iq� �0
! N 0,

qð1� qÞ

g2ðG�1ðqÞÞ
E½WðiÞWðiÞ

0

�
�1

� �
, ðA:2Þ

where gðG�1ðqÞÞ denotes the density of the corresponding error "i

distribution at the q-th quantile. This result is standard (see Koenker and
Bassett, 1978). For the second step estimates, we derive the asymptotic
distribution analogously to the two-step median results in Powell (1983)ffiffiffiffiffiffiffiffi

KðiÞ

T

r
ð�̂sji0, p, q,b	sjip, q,b�spÞ0 � ð�sji0, p, q, 	

sji
p, q, �

s
pÞ
0

� �
ðA:3Þ

41 Required assumptions of Belloni and Chernozhukov (2011) and quantile analogies to
Powell (1983) are fulfilled in our setting.
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!N 0,Q�1E
pð1� pÞ

f2ðF�1ðpÞÞ
�pð"

s
tÞ �

pð1� pÞ

g2ðG�1ðpÞÞ
�sji

0

p, q �pð"
i
tÞ, �

v
pðZt�1"

i
tÞ

� �	 
� �
,

ðA:4Þ

where in the scalar factor, fðF�1ðpÞÞ is the density of the corresponding
error "s at the p-th quantile, the function �vp of a vector applies �p to
each of its components, and �sjip, q ¼ ð�

sji
0, p, q, 	

sji
p, qÞ. The remaining main

part Q in the variance is given by Q ¼ H0E½AA0�H with
A ¼ ðWðiÞ, vecðZt�1 �W

ðiÞ0 Þ,VaRð�iÞÞ. Denote by I and 0 identity and null
matrices, respectively, and by 1 a vector of ones of appropriate dimension.
Then,

H0 ¼

diagð�iq, 2Þ 0 � � � 0 � � � � � � 0 � � �

0 diagð�iq, 1Þ � � � 0 � � � � � � 0 � � �

0 0 diagðvecð1dz � �
i
q
0ÞÞ � � � 0 � � �

I 0 � � � 0 � � � � � � 0 � � �

0 0 � � � 0 � � � Idð�iÞ	dð�iÞ

0BBBBB@

1CCCCCA,

where dZ is the dimension of Z, which is three in our application, dð�iÞ is the
dimension of VaR

ð�iÞ
t , and coefficients �iq, 2 are the components of �iq for

regressors that appear both in the first and second step. Correspondingly,
�iq, 1 are coefficients of regressors that appear only in the first step of the
individual VaR regression. Note that in the variance matrix, there is a
distinction in � for parts of V that are also controls in VaRi and VaR

ð�iÞ
t ,

which only appear in VaRs.

Choice of the company-specific LASSO penalty parameter �i

We determine �i in a data-driven way following a bootstrap type procedure,
as suggested by Belloni and Chernozhukov (2011):

Step 1. Take T iid draws from U½0, 1� independent of W1, . . . ,WT

denoted as U1, . . . ,UT. Conditional on observations of W, calculate the
corresponding value of the random variable,

�i ¼ T max
1�k�K

1

T

XT
t¼1

Wt, kðq� IðUt � qÞÞ

�̂k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� qÞ

p�����
�����:

Step 2. Repeat step 1 for B¼ 500 times, generating the empirical

distribution of �i, conditional onW through �i
1, . . . , �i

B. For the confidence
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level 
 � 1=K in the selection, set

�i ¼ c �Qð�i, 1� 
jWtÞ, ðA:5Þ

where Qð�i, 1� 
jWtÞ denotes the ð1� 
Þ-quantile of �i, given Wt and
where c � 2 is a constant.
The choice of 
 is a trade-off between a high confidence level and a
corresponding high regularization bias from high penalty levels in (6). As
in the simulation results in Belloni and Chernozhukov (2011), we choose

 ¼ 0:1, which suffices to obtain optimal rates of the post-penalization
estimators below. Finally, the parameter c is selected in a data-dependent
way, such that the in-sample predictive ability of the resulting VaR
specification is maximized. (Belloni and Chernozhukov, 2011 proceed in a
similar way). The latter is evaluated in terms of its best backtesting
performance, according to the procedure described right below.

Backtest for the model fit for VaRi

As suggested by Berkowitz, Christoffersen, and Pelletier (2011), for each
institution i, we measure VaR exceedances as Iit � IðXi

t < �VaR
i
q, tÞ. If the

chosen model is correct, then,

E½Iitj�t� ¼ q, ðA:6Þ

where �t is the information set up to t. The VaR is estimated correctly, if,
independently for each day of the covered period, the probability of
exceeding the VaR is q. Similarly to Engle and Manganelli (2004);
Kuester, Mittnik, and Paolella (2006); Taylor (2008), we include a
constant, three lagged values of It and the current VaR estimate in the
information set �t. Then condition (A.6) can be checked by estimating a
logistic regression model

Iit ¼ 
þ A0t� þUt,

with covariates At ¼ ðI
i
t�1, I

i
t�2, I

i
t�3,

dVaRi
t�1Þ
0. Denote by �Ii the sample mean

of the binary response Iit, and define Flogð�Þ as the cumulative distribution
function of the logistic distribution. Then, under the joint hypothesis

H0 :> 
 ¼ q and �1 ¼ � � � �4 ¼ 0,

the asymptotic distribution of the corresponding LR test statistic is

LR ¼ �2ðlnLr � lnLuÞ 

a
�25: ðA:7Þ
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Here, lnLu ¼
Pn

t¼1 Iit lnFlogð
þ A0t�Þ þ ð1� IitÞ ln 1� Flogð
þ A0t�Þ
� �� 

is the

unrestricted log likelihood function, which, under H0 simplifies to

lnLr ¼ n �Ii lnðqÞ þ nð1� �IiÞ lnð1� qÞ.

Bootstrap procedure for the joint significance test

The asymptotic distribution of the test statistic introduced in Subsection 4.1,

ST ¼ min
�s2�0

XT
t¼1

�pðX
s
t � B0t�

sÞ � min
�s2RKB

XT
t¼1

�pðX
s
t � B0t�

sÞ, ðA:8Þ

involves the probability density function of the underlying error terms and
is not feasible. Furthermore, bootstrapping ST would directly yield
inconsistent results. Therefore, we resample from the adjusted statistic

S�T ¼ min
�s2�0

XT
t¼1

wt�pðX
s
t � B0t�

sÞ � min
�s2RKB

XT
t¼1

wt�pðX
s
t � B0t�

sÞ

�
XT
t¼1

wt�pðX
s
t � B0t�̂

s
cÞ �

XT
t¼1

wt�pðX
s
t � B0t�̂

sÞ

 !
,

ðA:9Þ

where b�sc denotes the constrained estimate of �s, and fwtg is a sequence of
standard exponentially distributed random variables, with both mean and
variance equal to one. According to Chen et al. (2008), the empirical
distribution of S�T provides a good approximation of the distribution of
ST. Thus, if the test statistic ST exceeds some large quantile of the resampling
distribution of S�T, the null hypothesis is rejected.
The proposed testing method does not require resampling of observations

but is entirely based on the original sample. This provides significant gains in
accuracy in the two-step regression setting relative to standard pairwise
bootstrap techniques. A pre-analysis shows that this wild bootstrap type
procedure is valid in the presented form, as any serial dependence in the
data is sufficiently captured by the regressors in the reduced-form relation
not requiring block-bootstrap techniques.42
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