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Interpreting Implied Risk-Neutral Densities: The
Role of Risk Premia �
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Abstract. This paper examines differences between risk-neutral and objective probability densities
of future interest rates. The identification and quantification of these differences are important when
risk-neutral densities (RNDs), such as option-implied RNDs, are used as indicators of actual beliefs
of investors. We employ a multi-factor essentially affine modeling framework applied to German
time-series and cross-section term structure data in order to identify both the risk-neutral and the
objective term structure dynamics. We find important differences between risk-neutral and objective
distributions due to risk premia in bond prices. Moreover, the estimated premia vary over time in
a quantitatively significant way, which implies that the differences between the objective and the
risk-neutral distributions also vary over time. We therefore conclude that one should be cautious in
interpreting RNDs in terms of expectations. The method used in this paper provides an alternative
approach to identifying objective probabilities of future interest rates.

1. Introduction

The interplay between financial markets and central banks provides rich opportun-
ities for both market participants and monetary policy makers to extract valuable
information from financial asset prices. Market participants monitor and forecast
the policy decisions of central banks in order to price interest-rate related contracts
and other financial assets. Conversely, central banks are interested in evaluating
the markets expectations about its future interest-rate policy and about future un-
derlying fundamentals, such as growth prospects and inflation. Prices of financial
contracts (e.g., bonds, futures and options) are an obvious source for extracting this
kind of information and a large number of techniques have been developed towards
achieving this end, including the modelling of implied forward rates and implied
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98 PETER HÖRDAHL AND DAVID VESTIN

volatilities. Another approach which has been increasingly used to examine meas-
ures of uncertainty, is to model the entire implied density of the price of a financial
contract for a future date of interest.

This paper focuses on the role of risk premia when examining and interpreting
the information from such financial indicators in the context of interest rate-related
markets. This issue has, in practice, often been disregarded or, alternatively, an
implicit assumption has often been made that the impact of premia is negligible.
One example is the relatively common practice to interpret implied forward rates
as direct measures of expected future interest rates, without explicitly accounting
for risk premia considerations.

In the context of implied densities, the existence of possible premia may in
principle also have important implications for the interpretation of the information
from such densities. A common approach when estimating implied densities is to
assume some specific parametric specification for the density, and then calibrate
the parameters to minimize pricing errors with respect to a given cross-section of
observed derivatives prices with identical expiration. However, it is well-known
that this approach will deliver the so-called risk-neutral density of the underlying
price or yield at the time of expiration, and not the actual objective density. More
precisely, derivatives pricing relies largely on the absence of arbitrage, rather than
on some “objective” valuation theory. The absence of arbitrage, in turn, (essen-
tially) implies the existence of an equivalent martingale measure, often referred
to as the “risk neutral measure”, which is the relevant probability measure to use
when pricing derivatives as the discounted expected payoff. Heuristically, this risk-
neutral pricing framework implies that the probability measure used to price assets
is adjusted so as to make the expected return on a risky asset equal to the risk free
rate. It does not, however, mean that agents are assumed to be risk neutral.

The fact that option-implied densities deliver the risk-neutral probabilities is not
a problem if the aim is to price other securities, because this is the relevant density
for such purposes. It may, however, be a problem if the aim is to interpret market
expectations of uncertainty surrounding future interest rates or asset prices, since
the relevant distribution in this case of course is the true, objective density. This
paper aims at exploring the differences between these measures, in order to find
out whether one can safely ignore risk premia considerations when interpreting
RNDs, which largely seems to be current practice. Unfortunately, it turns out to be
difficult to analyze the impact of risk premia when the RND is modelled directly.
One possibility is to assume some specific functional form for the utility function
and then estimate the degree of risk aversion in order to back out the true PDF
from the RND, as in Bliss and Panigirtzoglou (2004). However, an alternative
approach is available, in that we can follow the pricing literature that models the
dynamic properties of the underlying asset. A few studies have taken a similar
route in examining risk-neutral vs. objective PDFs for equity indices, but these
have focused on quite restrictive single-factor specifications, as e.g., in the study
by Aït-Sahalia, Wang and Yared (2001). In contrast, we are mainly interested in
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examining these issues in connection with interest-bearing instruments, for which
a single-factor setup is likely to be even less realistic than in the case of equities.
We therefore turn to recently proposed dynamic multi-factor term structure models.
We focus on the class of affine term structure models (ATSMs) of Duffie and Kan
(1996) and Dai and Singleton (2000), which have received increasing attention in
the term structure literature due to their flexibility and analytical tractability. In
particular, within this class of models, Duffee (2002) has shown that a setup which
allows risk premia to depend on the factors in a flexible way does well in capturing
the dynamics of premia, and therefore also improves yield forecasts. Hence, we
employ this so-called “essentially affine” specification in our analysis of implied
densities. In this context, it is interesting to note that Egorov et al. (2003) provide
empirical evidence that the essentially affine specification of Duffee (2002) does
well in terms of forecasting U.S. yield densities.

Once a model for the term structure dynamics is specified, the distributional
properties of yields can be uniquely pinned down. Moreover, given that we specify
the functional form of the risk premium, Girsanov’s theorem allows us to quantify
the differences between the risk-neutral and the real-world probability measures. In
particular, we can explore the differences in the means of the two distributions for
arbitrary combinations of maturities and horizons, and examine if and how these
differences vary over time. This is, for example, of interest from a classical expect-
ations hypothesis point of view when one is interested in expected future interest
rates. In addition, our framework allows us to investigate how various measures of
dispersion differ between the risk-neutral and the objective probability measures.
This relates to the issue of interpreting the dispersion of implied densities as a
measure of the market’s perceived degree of uncertainty with respect to the future
evolution of the underlying. Apart from the impact on simple variance measures,
we can also quantify the differences between the measures in terms of the probab-
ilities for various scenarios, such as “the probability that the 10-year yield will be
lower than x% in y months”. This is of interest because implied distributions are
often implicitly or explicitly used to get an idea of such probabilities.

We focus our analysis mainly on the results for distributions on 3-month interest
rates and 10-year yields for horizons of up to one year, because these will be the
most relevant cases in practice. Specifically, the most liquid standardized interest
rate options markets in the euro area are the markets for options on three-month
EURIBOR futures and for options on 10-year German government bond futures
(Bunds). The results from this exercise indicate that risk premia considerations are
important, in the sense that there generally are non-negligible differences between
risk-neutral and objective densities. More importantly, we find that the differences
between these densities change over time as a result of time-variation in risk
premia.

The remainder of the paper is organized as follows. Section 2 reviews the the-
oretical foundation for the two alternative modelling strategies: the direct density
modelling approach and the dynamic process modelling approach. Section 3 il-
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lustrates the latter approach using the well-known and simple Cox, Ingersoll and
Ross (1985) model (CIR), while Section 4 considers more general affine multi-
factor models. Section 5 provides some density forecast evaluations, and section 6
concludes.

2. Theory

In the absence of arbitrage opportunities it is possible to show, given technical con-
ditions, that the price of any contingent claim, � at time t , based on an underlying
asset Y at time T , will be given by

�(t, Y ) = E
Q
t

[
e−

∫ T
t r(s)dsφ (YT )

]
, (1)

where φ (YT ) is the payoff of the claim and r (s) is the stochastic interest rate.
This is the fundamental result on which both the option-implied approach and the
dynamic process approach relies. Equation (1) states that the price of the claim,
say a European call option, will be given by the discounted value of the payoff of
the claim. The crucial thing to note is that the expected value should be evaluated
under an equivalent martingale measure, often denoted the risk-neutral measure
(Q). This is the source of the term risk-neutral density (RND).

This section reviews two ways of modelling this risk-neutral density. First, we
examine the case when the distribution is modelled directly. This line of work is
represented by the Melick and Thomas (1997) approach, which is widely used
by central banks to infer interest rate distributions from market prices. However,
as argued above, central bankers are mainly interested in the objective probability
measure, which differs from the risk-neutral measure due to risk premia. Therefore,
implicit in the interpretation of option-implied densities is an assumption that risk
premia do not matter “too much”. Alternatively, it is assumed that such premia
remain fairly constant over time, so that changes in the risk neutral density can
be interpreted in terms of changes in the actual, objective density. Of course, the
main appeal of the direct approach is that it often is relatively easy to implement in
order to obtain some indication of the distribution of the underlying. On the other
hand, a weakness with the direct approach to modelling the distribution is that it is
impossible to assess the importance of risk premia, since the analysis is conducted
under the risk-neutral measure.

To evaluate the quantitative differences, we therefore introduce a second ap-
proach, which amounts to modelling the evolution of the underlying state variables
that drive the dynamics of the yield curve. Specifically, we rely on the affine mod-
elling approach of Duffie and Kan (1996) and Dai and Singleton (2000), whereby
the underlying state variables and the instantaneous short-term interest rate fol-
low affine diffusion processes. An early and classical example of a model within
this framework is Cox, Ingersoll and Ross (1985). In the affine framework, it is
possible to relatively easily specify the relation between the risk-neutral and the
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objective probability measures, and to use market data to estimate all parameters
governing the dynamics under the different measures. Thus, if both approaches
properly capture the risk-neutral density, and the assumptions about the functional
form of the risk premium are correct, then we can examine the quantitative errors
associated with approximating the objective density with the risk-neutral one. We
elaborate some more on the two approaches mentioned above, in the following two
sub-sections.

We start by introducing some definitions. Let P (t, T ) denote the price, at t , of a
zero-coupon bond maturing at T . Correspondingly, y (t, T ) is the yield to maturity
for such a bond,

y (t, T ) = − ln (P (t, T ))

T − t
(2)

2.1. MODELLING THE DISTRIBUTION

A specific case of (1) which we will be interested in is European options. In this
case, the price of a call option at t can be expressed as

C (t, T ;K,P ) = E
Q
t

[
e−

∫ T
t r(s)ds [P (T )−K]+

]
(3)

where P (T ) is the value of the underlying contract (e.g., a bond) at the expiration
date T of the option, and K is the strike price. In the case of futures options with
full margining, the discount effect vanishes and the option price formula collapses
to

C (t, T ;K,P ) = E
Q
t [P (T )−K]+ .

This is relevant, because standardized interest rate options contracts are typically
options on futures, as in the case of EURIBOR and Bund futures options.

Now, if we are prepared to assume that the risk-neutral distribution of P (T )
is given by fQ (x), then we can use market data to get hold of the parameters of
the distribution. For example, assume that fQ (x) is a mixture of two log-normal
distributions, as suggested by Melick and Thomas (1997). Then, the risk-neutral
density is given by

fQ (x) = θL (x;µ1, σ1)+ (1 − θ) L (x;µ2, σ2) , (4)

where

L (x,µi, σi) = 1

xσ
√

2π
e
− (ln(x)−µi)2

2σ2
i .
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102 PETER HÖRDAHL AND DAVID VESTIN

Let C̃ (t, T ;K,µ, σ ) denote the theoretical call option price obtained by integrat-
ing the above distribution for a given set of parameters, γ = [µ1, µ2, σ1, σ1, θ]′.
Assuming that we, for a given expiration date T , have market data on a set of
option prices with different strikes, indexed by i, we can obtain estimates of the
parameters by solving

min
γ

∑
i

(
C (t, T ;Ki, P )− C̃ (t, T ;Ki, γ )

)2
. (5)

Further, if one is prepared to assume that the Q-measure coincides with (or
is approximately equal to) the objective measure, the graph of f Q (x) can be
interpreted in terms of the uncertainty perceived by the market about the future
price of the underlying, e.g., a bond. Taking the example of a bond price density,
with an appropriate density transformation, this can be converted into a statement
about the distribution of future yields.1 Our interest is therefore to evaluate how
large the differences between the risk-neutral and the objective densities are. It is
conceptually hard to do this in the approach outlined above. Nevertheless, as the
next section will show, there is a natural relationship between the two measures
when using an alternative modelling strategy.

2.2. MODELLING THE TERM STRUCTURE

Most of the bond pricing literature models the dynamic evolution of a number of
state variables or factors, X, that drive the prices of interest-related contracts. This
is typically done by specifying the functional form of the deterministic and the
diffusion terms, together with initial conditions for the state variables

dX (t) = µ (t,X (t)) dt + σ (t,X (t)) dW (t) ,

X (t) = Xt,
(6)

where W (t) is a vector-valued Brownian motion, specified under the objective
probability-measure P . For notational convenience we will from this point on use
Xt, Wt to denote X (t) , W (t), etc.

For reasons of tractability, it is useful to assume that zero-coupon bond prices
are exponential-affine functions of the state variables, that is

P (t, T ) = eA(t,T )+B(t,T )·Xt , (7)

whereA(t, T ) and the factor loadings B (t, T ) are functions of the time to maturity
T − t , with initial conditions A(0) = B (0) = 0. It turns out that the requirements
needed for this to apply is that µ (t,Xt ) and σ (t,Xt ) σ ′ (t, Xt ) are affine functions
of the state variables under the Q-measure. In this case, we also know that the

1 More specifically, the Jacobian of the transformation is given by differentiating (2).
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INTERPRETING IMPLIED RISK-NEUTRAL DENSITIES: THE ROLE OF RISK PREMIA 103

instantaneous interest rate r will be affine in the state variables, so that rt = δ0 +
δ1Xt. Once the objective dynamics are specified, Girsanov’s theorem provides the
link between the two measures. Specifically, if W is a (potentially vector-valued)
Wiener process under one measure, then it follows from Girsanov’s theorem that
WQ is a Wiener process under the Q measure,

dW
Q
t = dWt − gtdt, (8)

where gt is the kernel in the transformation. The so-called “market price of risk”,
$t is defined to be the negative of the Girsanov kernel, gt (see Duffie (2001) for
further details).

Restricting our attention to the affine class of models, by applying Ito’s formula
on (7) and imposing the restrictions of no-arbitrage, it is possible to show that
the required local rate of return on any bond is equal to the instantaneous interest
rate r plus a factor which is proportional to the local volatility of the bond return
σt (P (t, T )),

µt (P (t, T )) = rt +$tσt (P (t, T )) .

From this relation, it is easy to see intuitively why $t is commonly referred to as
the market price of risk. Rearranging, we see that $ is the required rate of return
in excess of the risk-free short rate, divided by the volatility,

$t = µt (P )− rt

σt (P )
. (9)

Moreover, it is clear that the market price of risk is required to be identical
irrespective of the maturity of the bond in order to preclude arbitrage opportunities.

Once the functional form ofµ, σ and$ have been specified, and the parameters
are estimated using market (panel) data, we can in principle solve (6) and calculate
the distributions of future interest rates. Two things can be noted. First, if the model
is affine under Q, it is possible to easily calculate prices of bonds and contingent
claims. Second, if the model is affine under P , estimation of the model using time-
series data is facilitated. Current practice in the literature is to assume that the
functional form of the market price of risk is such that both these properties hold.
Dai and Singleton (2000) provide an overview of this affine framework, whereas
Duffee (2002) suggests an “essentially affine model”, meaning that while the factor
dynamics are affine under both P and Q, the variance of the state price deflator
is not affine. This latter approach has proven to be important with respect to the
forecasting abilities of the model. We will return to this issue in some more detail
in Section 4.

It is interesting to compare the framework discussed above to the situation in the
Black and Scholes (1973) model for equity options. In that model, there is a unique
transformation between P and Q because markets are complete. In our case, this
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is no longer true. From a mathematical perspective, markets are incomplete in the
sense that the exogenously specified risk sources are not traded assets and bonds
can therefore not be replicated by taking positions in those assets (in clear contrast
to the Black and Scholes model). However, once the functional form of the risk
premium has been chosen, the correspondence between the martingale measure
and the objective measure is uniquely pinned down. At least in principle, all that
is required to completely identify the measure is time series observations on the
same number of bonds as there are risk sources in the model. With long enough
time series, it should be possible to identify the correct functional form of the
risk premium. Thus, in a sense, markets are (informationally) complete from the
perspective of the econometrician.

3. The Cox, Ingersoll and Ross Model

In order to take a closer look at the issues discussed in previous sections, and at
the same time keep the discussion at a relatively intuitive level, we first provide
an illustration based on a simple affine one-factor model, namely the well-known
Cox, Ingersoll and Ross (CIR, 1985) model. In this model, the term structure is
completely determined by the dynamic behavior of one state variable which, in
turn, can be expressed in terms of the dynamics of the short-term interest rate,

drt = κ (θ − rt ) dt + σ
√
rtdWt , (10)

where dWt is a standard Brownian motion increment. This equation describes the
interest rate dynamics under the objective probability measure P. It is clear from
this specification that the short rate r will revert towards a constant level θ at an ad-
justment rate determined by κ , and that the variance of the short rate is proportional
to the interest rate level.

Given the assumptions underlying their model, CIR obtain closed-form solu-
tions for bond prices (P ) of any given maturity. These prices depend on the current
value of the state variable (the instantaneous interest rate), the parameters of the
model, the time to maturity of the bond, and the market’s required compensation for
bearing risk. In the CIR case, the local expected return can be shown to be equal to
r + λrPr/P, where Pr denotes the partial derivative of the bond price with respect
to the short rate r, and λr is the covariance of changes in the interest rate with
changes in optimally invested wealth (see CIR (1985), p. 393). The compensation
for risk is therefore λrPr/P, which will be positive if λ is negative, since Pr < 0.
Based on the discussion in the previous section, we know that the market price of
risk must satisfy the condition (9) for bonds of any maturity. By substituting for the
local expected rate of return and the volatility in the CIR model, we can identify
the specific form for the market price of risk in the CIR model as

$CIR = λ
√
r

σ
. (11)
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Equipped with the market price of risk, we can now obtain the dynamics of
the instantaneous interest rate r under the risk-neutral, or equivalent martingale,
measure Q using Girsanov’s theorem, whereby

drt = κ̃
(
θ̃ − rt

)
dt + σ

√
rtdW̃t , (12)

where dW̃t is a Brownian motion increment under Q, and

κ̃ = κ + λ, (13)

θ̃ = κθ

(κ + λ)
, (14)

are the speed and level of mean reversion under the risk-neutral measureQ. Hence,
given a fixed set of parameters for the interest rate process under P, a larger neg-
ative value for the risk parameter λ will imply a higher level θ̃ towards which the
short rate will revert under Q, as well as a slower speed of adjustment than under
the actual probability measure. In contrast, we see that the instantaneous volatility
of r remains unchanged after the change of probability measure. However, this
does not mean that the volatility over a discrete time interval will be unchanged,
since it will be dependent on the parameters in the drift specification as well. This
is easily seen from the analytical expression for the variance of r (s) conditional on
r (t) , s > t , in the CIR model2,

Var [r (s) | r (t)] = r (t)

(
σ 2

κ

)
(exp [−κ (s − t)] − exp [−2κ (s − t)])

+ θ

(
σ 2

2κ

)
(1 − exp [−κ (s − t)])2 . (15)

The impact on the conditional variance of a change in the risk parameter can be
divided into two components. First, a larger (negative) λ leads to a slower speed of
mean-reversion under Q, (13), which in turn results in a higher variance because
the short rate r is pulled back towards the long run mean at a slower pace relative
to P . Second, a larger (negative) λ increases the risk neutral mean-reversion level,
(14), thereby raising the variance (since it is increasing in the level of the short
rate).

Given the differences between the short-term interest rate processes under the
real-world probability measure P and the risk-neutral measure Q, it is of interest
to examine what they imply for the distribution of bond yields under P and Q.
The conditional density of the short term interest rate is available in closed form,
as is the corresponding conditional distribution function, which is non-central
chi-square (see CIR (1985, pp. 391–392)). Moreover, since bond yields, y, for

2 See Cox et al. (1985, p. 392).
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Table I. GMM estimates of CIR parameters under the objective probability measure P, and
fitted value of λ

The parameter values in the table are obtained by estimating the discretized CIR
model: ,rt = κ (θ − rt ),t + σ

√
rt,Wt on German weekly data between January 1996

and March 2002. Standard errors are asymptotic, based on the optimal weighting matrix of
Hansen (1982).

Parameter Estimate St. err.

κ 0.523 0.257

θ 0.031 0.005

σ 0.027 0.003

λ −0.295 –

maturities longer than instantaneous simply are affine functions of the short rate,
y (τ) = a (τ) + b (τ) r (t) , their conditional densities are easily obtained through
a transformation of the analytical short-rate density. The functions a (τ) and b (τ)
depend on time to maturity (τ ) as well as on the parameters of the interest rate
process and the market price of risk (see CIR (1985) for the explicit formulae).

In order to illustrate, we use the parameter values in Table I to calculate densities
under P and underQ. The values in Table I were obtained by estimating the model
with the methods used by Aït-Sahalia (1996) on German weekly term structure
data between January 1996 and March 2002.

Figure 1 displays the distribution of the short rate r (s) conditional on r (t) for
the case when the horizon (s − t) is one year, and when the initial short rate is equal
to 3.4%.3 From the figure, a couple of observations can immediately be made. First,
the risk-neutral density lies to the right of the actual density. This follows from the
previously mentioned fact that for a negative value of the risk parameter λ, the
short-term interest rate will revert towards a higher level under Q than under the
actual probability measure P . Second, the risk-neutral densities are more dispersed
compared to the actual ones, as discussed above.

Since yields are affine in the instantaneous interest rate, the densities for longer-
maturity yields will retain the functional form of the short rate density in Figure 1.
The specific shape of a density for a given maturity τ will, apart from the value of
the state variable, depend on the function b (τ) , which in turn depends on the para-
meters governing the risk-neutral dynamics, as well as on time to maturity itself.
Moreover, the differences between the P and Q densities for any given horizon
will depend on the differences between the physical and risk-neutral dynamics of
r, and on the forecast horizon. In the simple setting of the CIR model, the price
of risk parameter λ will, apart from a Jensen’s inequality term, determine how big
these differences turn out to be.

3 The initial short rate 3.4% used in this example is the level of the shortest interest rate at the end
of the data sample.
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Figure 1. Short-term interest rate distribution under P and Q, 1 year ahead, for initial state
variable r(t) = 3.4%.

Figure 2. Three-month interest rate distribution under P and Q, 1 year ahead, for initial state
variable r(t) = 3.4%.
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108 PETER HÖRDAHL AND DAVID VESTIN

Figure 3. Ten-year yield distribution under P and Q, 1 year ahead, for initial state variable
r(t) = 3.4%.

Figure 2 displays the one-year ahead distribution of the three-month interest
rate conditional on an initial short rate of 3.4%. It is not surprising that the three-
month densities resemble the instantaneous densities in Figure 1, given the relative
similarity of the maturities. Greater differences are visible for the corresponding
one-year ahead densities of ten-year bond yields in Figure 3. First, the densities are
centered around higher levels than the densities in Figures 1 and 2, reflecting the
upward-sloping tendency of the yield curve. Second, the long-term yield densities
are substantially less dispersed than the shorter-rate densities. This result is due to
the fact that the term structure of yield volatilities tends to be downward-sloping;
i.e., long-term yields tend to be less volatile than short-term rates (on an annualized
basis). In terms of holding returns, however, densities based on long-term bonds
would be more dispersed than return densities based on short-term bonds.

4. Three-factor Essentially Affine Models

Moving away from the one-factor CIR case, we now turn to multi-factor models
which provide more flexibility in capturing various features of term structure data
over time. To this end, we focus on the affine class of dynamic term structure
models which has attracted increasing attention by researchers as well as practition-
ers, in particular following Duffie and Kan’s (1996) presentation of a generalized
affine modelling framework. Empirical research has shown that three factors seem
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sufficiently flexible to capture important aspects of the dynamics of term structure
data (e.g., De Jong (2000), Dai and Singleton (2002), Duffee (2002)). While more
factors in theory should provide additional flexibility, practical considerations tend
to rule out estimation of high-dimensional dynamic term structure models. We
therefore focus on three-factor affine models in this section, in the hope that these
will provide a reasonable trade-off between flexibility and analytical tractability.

Given our choice to use a three-factor affine specification to model the term
structure, a large number of different variants are available within this class, de-
pending on how we choose to parameterize the model. Recently, Dai and Singleton
(2000) has proposed a classification of multi-factor ATSMs into subfamilies of
admissible models depending on the choice of variance specification.4 Specifically,
each N-factor ATSM can be categorized into N + 1 subfamilies, according to the
number of factors that drive the conditional factor variances.

Consider a general N-factor ATSM where the instantaneous short-term interest
rate is an affine function of the factors Xt ,

rt = δ0 + δ′
xXt, (16)

and where Xt follows an affine diffusion,

dXt = K (1−Xt) dt +2
√
StdBt

≡ µ (X) dt + σ (X) dBt, (17)

where dBt is an N-dimensional vector of independent standard Brownian motions
under the objective probability measure P, while K and 2 are N × N parameter
matrices, and 1 is an N-vector of parameters. The N × N matrix St is diagonal,
with diagonal elements given by

[St ]ii = αi + β ′
iXt , (18)

where αi is a scalar and βi is N × 1. For future reference, we let α denote the
N-vector consisting of the individual αi:s, and

B ≡ (β1 β2 β3)

denote the N × N matrix of coefficients on Xt. By imposing restrictions on the
matrix B, we can obtain different versions of the N-factor model with respect to
the degree of dependence of the conditional variances on the factors. The categor-
ization by Dai and Singleton (2000) identifies N + 1 general subfamilies in this

4 Dai and Singleton (2000) refer to an ATSM as admissible if it ensures positive factor variances,
or, more precisely, if if it ensures that [St ]ii (see below) is strictly positive for each i (see their
Appendix B for further details). Their classification scheme imposes the minimal known sufficient
conditions for admissibility and and the minimal normalizations for econometric identification.
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regard, where the variance σ (X) is driven by m factors and m can take values
from 0 to N. Specifically, letting m ≡ rank (B), Dai and Singleton use Am (N) to
denote the set of admissible N-factor ATSMs withm factors determining the factor
variance matrix.

For any given specification of an N-factor ATSM, a number of invariant trans-
formations can be made, in which the state and parameter vectors undergo various
transformations and rescalings, while resulting in an unchanged instantaneous
short rate and unchanged bond prices (see Appendix A in Dai and Singleton
(2000)). In order to facilitate the task of checking whether some given model
specification is admissible, they propose a specific invariant transformation, the
so-called canonical representation of admissible ATSMs, which imposes minimum
constraints to ensure admissibility and econometric identification. Basically, the ca-
nonical representation partitions the factors into a vector consisting of them factors
(if any) which drive the conditional variances, and the N −m other factors, so that
X′ = (

XB′
m×1, X

D′
(N−m)×1

)
. The parameter matrices and vectors are then partitioned

accordingly, and the following normalizations are imposed:

K =
[

KBB
m×m 0m×(N−m)

KDB
(N−m)×m KDD

(N−m)×(N−m)

]
, (19)

if m > 0, and with K triangular otherwise,

1 =
(

1Bm×1
0(N−m)×1

)
, (20)

2 = I, (21)

α =
(

0m×1

1(N−m)×1

)
, (22)

and

B =
[

Im×m BBD
m×(N−m)

0(N−m)×m 0(N−m)×(N−m)

]
. (23)

Furthermore, a number of parameter restrictions are imposed in order to assure
admissibility and econometric identification (see Dai and Singleton (2000) for
details).

4.1. A GAUSSIAN THREE-FACTOR ATSM: A0 (3)

Starting off with the simplest three-factor canonical ATSM, consider the case
where none of the factors affect the volatility of Xt , i.e., an A0 (3) model. In this
case, the canonical representation sets α equal to a 3 × 1 vector of ones, while B
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is set to zero, so that σ (X) = I3. Hence, we are left with a homoskedastic model,
where the factors follow a Gaussian diffusion. Clearly, interest rates and bond
yields do not have constant variances, but this model can nevertheless serve as a
simple initial point of departure. Moreover, as shown by Duffee (2002), it turns out
that there is a trade-off between the flexibility of the variance specification and the
possibility to specify a flexible market price of risk. Furthermore, the flexibility of
the market price of risk specification has proved crucial for improving interest rate
forecasts and for capturing important features in the data (Duffee (2002), Dai and
Singleton (2002)). Consequently, the “simple” Gaussian model may not necessarily
fare as badly as one could fear a priori.

The key to the arguments above regarding the trade-off between the flexibility
of the variance specification and the market price of risk, is that one moves away
from the “standard” assumption for the market price of risk specification, which
has that

$(t) = √
Stλ, (24)

where λ is a vector of constants. In this setup, compensation for risk will be propor-
tional to the variance of the risk factors. The advantage of this simple specification
is that it preserves the affine structure when changing measure from the objective to
the risk-neutral probability measure.5 Duffee (2002), on the other hand, proposes
a specification for the market price of risk which breaks the link between com-
pensation for risk and the variance.6 The resulting class of models, denoted the
“essentially affine” class, allows not only the variance of the factors to determine
the risk compensation, but also lets the factors themselves influence the compens-
ation for risk. It turns out that the essentially affine specification also preserves the
affine features of the model under both the objective and the risk-neutral measure.7

In more detail, the essentially affine class defines the market price of risk vector
as

$t = √
Stλ+

√
S−
t ψXt, (25)

where
√
S−
t is defined as the following diagonal matrix

√
S−
t (ii) =

{ (
αi + β ′

iXt
)−1/2

if inf
(
αi + β ′

iXt
)
> 0

0 otherwise,
(26)

5 ATSMs with this type of market price of risk are therefore sometimes referred to as “completely
affine”.

6 Duarte (2004) proposes an alternative specification (“semi-affine”) which also provides added
flexibility in the market price of risk. However, this specification does not in general allow greater
flexibility than that of Duffee (2002). Moreover, the semi-affine class is not affine under the objective
probability measure, thereby making it computationally more burdensome to handle in practice.

7 The label “essentially affine” refers to the fact that while the factor processes remain affine under
a change of measure, the variance of the state price deflator, $$′, is not affine. This is, however,
inconsequential since this variance does not affect bond prices.
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while ψ is a 3×3 parameter matrix. Given the canonical representation as specified
in (19)-(23), it is easy to see why there is a trade-off between the flexibility of σ (X)
and that of $. Clearly, in the A3 (3) case, where by (22) α = 0 and by (23) B is
non-zero,

(
αi + β ′

iXt
)

can reach zero for each of the three factors i, if Xt were to

reach zero. The matrix
√
S−
t (ii) is therefore defined to be zero according to (26), and

$ collapses to the completely affine specification (24). In contrast, in the Gaussian
A0 (3) model, αi = 1 and βi = 0 for all i, which means that

√
S−
t = √

St = I3,

and ψXt therefore fully impacts on the market price of risk. In between these
two extreme cases, m = 1 or 2 will imply models with more flexible variance
specifications and less flexible $ than in the A0 (3) case, but still more flexible
risk prices than in the A3 (3) specification.

As mentioned above, the degree of flexibility in the risk price has proven essen-
tial with respect to the ability of ATSMs to predict future interest rates. However,
while the A0 (3)model allows the most flexible specification of$, it remains to be
seen how successful it is in pricing derivative contracts, since the accurate pricing
of such contracts typically require that the model is able to successfully capture the
dynamics of the term structure of volatilities.

In order to evaluate the performance of the A0 (3) model, and anticipating
future applications to German Bund futures options, we estimate the parameters
of the model using German term structure data from January 1983 to March 2002.
Specifically, we obtain a monthly time-series of parameter estimates for Svensson’s
(1994) extension of the Nelson and Siegel (1987) model from the BIS. These para-
meters, in turn, have been obtained by fitting the model to the prevailing German
yield curve at the end of each month, i.e., to available money market and govern-
ment bond data. These parameters allows us to obtain zero-coupon bond prices and
yields for any maturity every month during the sample period, i.e., a time-series of
German term structures. Since the introduction of the euro in January 1999, we can
also view these as proxies for the euro area term structures.

The estimation of ATSMs is based on a Kalman filter technique, where the data
used consists of zero-coupon yields for the maturities 3, 6, 9, and 12 months, as
well as 2, 3, 5, 7, and 10 years. Based on the parameter estimates obtained from the
BIS, the estimated Nelson-Siegel-Svensson yield curves at times display a some-
what erratic behavior at the very short end of the curve, in particular in the early
part of the sample. We therefore substitute the model-based 3-month rates with
a series of actual observed 3-month DEM (EUR after December 1998) interbank
interest rates. Figure 4 displays the data used in the estimations.

4.2. ESTIMATION USING THE KALMAN FILTER

The estimation of multi-factor ATSMs is complicated by the fact that there is
typically no closed-form solution available for the density of discretely sampled
yields or bond prices which could be used in maximum likelihood (ML) estima-
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Figure 4. Yield data used in the estimations of multi-factor ATSMs.

tion. However, for Gaussian models, the conditional density is known, and we can
therefore proceed with ML estimation in the A0 (3) case. Typically in empirical
applications, the number of maturities used in the estimation is set equal to the
number of factors (e.g., Dai and Singleton (2000)), or, alternatively, it is assumed
that yields for N maturities are observed without any error whereas some error
structure is imposed on any additional maturities included in the estimation (e.g.,
Duffee (2002)). In this way, the unobservable factors can be inverted for using the
assumed perfectly observable yields. One problem with this approach is that is
that it is not entirely clear why the yields for some more or less arbitrarily chosen
maturities should be observed perfectly, whereas other yields are observed with
some measurement error.

Instead, we follow among others Lund (1997), de Jong (2000), and Duffee and
Stanton (2001) in assuming that all yields are observed imperfectly, and apply-
ing the Kalman filter technique to estimate the underlying unobservable factors.
In principle, these “measurement errors” can be seen as reflecting e.g., bid-ask
spreads, non-synchronous data, or other market-specific influences. In this state-
space setup, the evolution of the factors over discrete time intervals determines
the transition equation, while the measurement equation is taken to be the relation
between yields of different maturities and the factors. Moreover, the prediction
errors from the Kalman filter and their associated covariances can be used to ob-
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tain the exact log-likelihood function in the Gaussian case, or to construct a quasi
log-likelihood function in more general cases.

Assume that the data set consists of a time series of length T ofM zero-coupon
bond yields with constant maturities, Yt = (yt (τ1) , . . ., yt (τM)) , where

yit = − lnPit
τi

,

and τi is the time to maturity of bond i. Let the observed yields be equally spaced
over time, at intervals of length h. Furthermore, in line with the arguments above,
assume that the observed yields consist of the theoretical yields obtained from some
chosen model and a measurement error. This provides us with the measurement
equation,

Yt = d (φ)+ Z (φ)Xt + εt , (27)

where the measurement error εt is assumed to be normally distributed,

εt ∼ N (0,H (φ)) , (28)

and φ denotes the vector of parameters in the model. In practice, we assume that
H (φ) is diagonal, and include the diagonal elements of this matrix in the set of
parameters to be estimated. Comparing the measurement equation (27) with the
theoretical expression for the yield on a zero-coupon bond with maturity τ in the
affine framework,

yt (τ ) = − lnPt (τ)

τ
= −1

τ

(
A(τ)+ B (τ)′Xt

)
,

we see that

d (φ) = −A(τ)
τ

(29)

and

Z (φ) = −B (τ)
′

τ
. (30)

As mentioned before, the functions A(τ) and B (τ) are solutions to a system of
ODEs. Specifically, in the A0 (3) case, we have

dA (τ)

dτ
= −δ0 − B ′ (τ ) λ+ 1

2
B ′ (τ ) B (τ) , (31)

dB (τ)

dτ
= −δy − ψ ′B (τ)− K ′B (τ) . (32)
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Here, we can note that since A(τ) and B (τ) are functions of, among other things,
the λ and ψ parameter matrices in the market price of risk (25), we are able to
estimate these parameters and thereby recover the risk-neutral dynamics.

Next, the transition equation describes the evolution of the state vector from one
observation time to the next,

Xt = >(φ)Xt−h + ut , (33)

where

>(φ) = exp [−Kh] , (34)

and exp [−K (h)] refers to the matrix exponential function, defined as

exp [−Kh] =
∞∑
k=0

1

k! (−Kh)k .

The transition equation (33) does not contain any constant in the A0 (3) case since
the normalization (20) in the canonical representation sets 1 = 0. Because the
model is Gaussian, the innovation in the transition equation is normally distributed,

ut ∼ N (0, Vt (φ)) , (35)

where the covariance matrix is given by (see e.g., Lund (1997) or Duffee (2002))

Vt (φ) =
∫ t

t−h
exp [−K (t − s)] exp

[−K ′ (t − s)
]
ds. (36)

Given the specification of the measurement and the transition equations, the
Kalman filter algorithm can be implemented to provide a sequence of predic-
tions and updates of the state vector and its variance. Furthermore, the likelihood
function is obtained as a result of the Kalman filter recursions, thereby enabling
parameter estimation. Appendix A contains some further technical details on the
implementation of the Kalman filter in this setting.8

Applying the estimation procedure outlined above, we obtain parameter estim-
ates for the A0 (3) model, as reported in Table II. Since we are able to estimate the
price of risk parameters, we have effectively identified both the objective real-world
dynamics and the risk-neutral dynamics of the underlying factors, as postulated
by the A0 (3) specification. This enables us to fully characterize the features of
the short-term interest rate or zero-coupon bond yields of any maturity, including
the conditional distribution of these variables under both probability measures.
Hence, assuming that the specification of the model is correct, we now have a

8 See also e.g., Lund (1997) or de Jong (2000) for further details on implementing the Kalman
filter to estimate ATSMs.
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Table II. QML parameter estimates for the essentially affine A0 (3) model

The standard errors are based on the asymptotic variance-covariance matrix of White
(1982). The estimates of the measurement error variances in H (φ) are not reported.

Parameter Estimate Standard error

δ0 0.052 0.002

δ1 × 102 0.037 0.178

δ2 × 102 0.554 0.085

δ3 × 102 0.926 0.079

κ11 0.196 0.140

κ21 −0.415 0.116

κ22 1.363 0.204

κ31 −0.314 0.334

κ32 1.344 0.494

κ33 0.151 0.080

λ1 −0.405 0.219

λ2 −0.052 0.032

λ3 −1.469 0.267

ψ11 −0.191 0.102

ψ12 0.765 0.365

ψ13 0.009 0.019

ψ21 0.185 0.169

ψ22 −0.151 0.186

ψ23 −0.059 0.021

ψ31 0.431 0.162

ψ32 0.374 0.451

ψ33 0.026 0.021

way of examining the discrepancies between risk-neutral interest rate distributions,
which is what an option-implied approach would deliver, and objective interest rate
distributions, which is what policymakers are interested in.

The A0 (3) specification allows us to recover yield distributions very easily,
since we know that the conditional yield distribution will be normally distributed.
Specifically, the mean of the distribution of a τ -maturity zero-coupon yield at time
t + h conditional on information at time t will be

E
[
yt+h (τ ) | Xt

] = −A(τ)
τ

− B (τ)′

τ
E

[
Xt+h | Xt

]

= −A(τ)
τ

− B (τ)′

τ
exp [−Kh]Xt, (37)
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where the second equality follows from (33) and (34). Moreover, the corresponding
conditional variance will be given by

Var
[
yt+h (τ ) | Xt

]

= B (τ)′

τ
Var

[
Xt+h | Xt

] B (τ)
τ

= B (τ)′

τ

(∫ t+h

t

exp [−K (t − s)] exp
[−K ′ (t − s)

]
ds

)
B (τ)

τ
. (38)

Hence, the conditional objective (P ) distribution of yt+h (τ ) will be Gaussian,
with mean given by (37) and variance (38). The corresponding risk-neutral (Q)
distribution can be found by using the risk-neutral dynamics when evaluating the
conditional expectation and variance of X :

EQ
[
Xt+h | Xt

] = (
I − exp

[−KQh
])
1Q + exp

[−KQh
]
Xt, (39)

VarQ
[
Xt+h | Xt

] =
∫ t+h

t

exp
[−KQ (t − s)

]
exp

[−KQ′ (t − s)
]
ds, (40)

where KQ = (K + ψ) , and 1Q = − (K + ψ)−1 λ follow from Girsanov’s
theorem.

To illustrate the distinction between the objective and the risk-neutral distribu-
tions, consider the one-year ahead conditional distributions of the 3-month and the
10-year zero-coupon yields. Figures 5 and 6 display these distributions for each of
the two probability measures, as implied by the parameter estimates and the filtered
factors at the end of our sample (end-March 2002).

While the differences in the case of the 3-month rate seem relatively small for
the particular factor values in this example, there are non-negligible differences
between the risk-neutral and the objective densities in the case of the 10-year
yield. In the example shown, the mean of the objective distribution is about 25
basis points higher than in the risk-neutral one, while the yield standard deviation
is about 0.7% in the P -distribution, and around 0.85% in the Q-distribution.9

More importantly, the implied probabilities for different yield outcomes can differ
substantially. For example, in the example above, the risk-neutral probability that
the 10-year yield would be below 5.0% one year ahead is approximately 18.6%,
whereas the actual P -probability for the same outcome is only around 7.8%.

In addition, the conditional means of the yield distributions will change over
time, as the factors evolve. The relation between the objective and the risk-neutral
means will also change, and therefore the relation between the probabilities for

9 To put the mean difference in perspective, over the entire sample between 1983 and 2002 the
estimated average difference in the absolute value of the difference between the means is 34 basis
points.
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Figure 5. One-year ahead conditional distribution of the 3-month interest rate, as implied by
the A0 (3)-model, end-March 2002.

Figure 6. One-year ahead conditional distribution of the 10-year zero-coupon bond yield, as
implied by the A0 (3)-model, end-March 2002.
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different outcomes will change. In fact, depending on the evolution of the factors,
the difference between the means of the distributions may change sign during some
periods. However, it is easy to see from (36) that the variances of the P and Q
distributions will remain constant over time, despite variation in the factors. In
order to allow greater flexibility in the conditional variance specification, we turn
to the A1 (3) model in the next section.

4.3. THE A1 (3) ESSENTIALLY AFFINE MODEL

In the A1 (3) model, only one of the three factors affect the volatility of Xt . In
accordance with the canonical representation, this factor is assumed to be the first
one, and the parameter vectors and matrices are adjusted according to (19)–(23).
Notably, the first element of the vector of long-run means, 1, is no longer zero,
whereas α1 = 0, and the first row of B is different from zero. We impose suit-
able parameter restrictions to ensure admissibility and identification (see Dai and
Singleton (2000)).

The implications of the A1 (3) specification on the conditional variance can
easily be seen by comparing with the A0 (3) model. According to the latter model,
St is equal to I in the diffusion term of the factor process dXt = K (1−Xt) dt +√
StdBt . In contrast, the S-matrix in the A1 (3) model is given by

St =

 X1t 0 0

0 1 + β12X1t 0
0 0 1 + β13X1t


 . (41)

The first factor, X1, therefore enters as a stochastic volatility factor in each of
the three factors. However, as argued above, this added flexibility in the variance
specification comes at a cost in terms of the flexibility of the price of risk in the
essentially affine framework. Specifically, because inf

(
α1 + β ′

1Xt
)

is no longer
greater than zero, (26) requires that S−

t (11) = 0, resulting in

√
S−
t =


 0 0 0

0 (1 + β12X1t )
−1/2 0

0 0 (1 + β13X1t )
−1/2


 . (42)

Since the first column of
√
S−
t is zero, the first row of ψ does not impact on the

market price of risk and we therefore set this row to zero.
As in the A0 (3) case, we estimate the A1 (3) model using the Kalman filter

technique. However, in contrast to the Gaussian case, there is no longer a closed-
form solution available for the conditional density of bond yields, and we can
therefore not use exact ML estimation. A number of alternative approaches have
been suggested in the literature, including Simulated Method of Moments (Duf-
fie and Singleton (1993)), Efficient Method of Moments (Gallant and Tauchen
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(1996)), and estimation based on the conditional characteristic function (Singleton
(2000)). However, these approaches often turn out to be quite computationally
burdensome to implement, in particular for multi-factor ATSMs. We therefore
proceed with the use of the Kalman filter and assume a normal distribution for
the innovations in the transition equation in order to implement a quasi-maximum
likelihood (QML) estimation approach, as in Lund (1997), De Jong (2000), and
Duffee and Stanton (2000), among others. In this context, it is interesting to note
that Duffee and Stanton (2000) find in a Monte Carlo study of the EMM and the
Kalman filter/QML estimation techniques that the latter performed substantially
better than the former in small samples.

Compared with the A0 (3) case, the implementation of the estimation procedure
for the A1 (3) model requires a few adjustments. The measurement equation (27)
of the state space model will remain unchanged, but the functions A(τ) and B (τ)
will now be solutions to a different system of ODEs (not shown), reflecting the new
dynamics and risk prices of the factors. The numerical Runge-Kutta method can be
used to provide fast and accurate solutions. The transition equation, however, will
be different because 1 no longer has all elements equal to zero. Specifically, we
get

Xt = c (φ)+>(φ)Xt−h + ut , (43)

where it can be shown that (see e.g., Lund (1997) or Duffee (2002))

c (φ) =
∫ t

t−h
exp [−K (t − s)] K1ds

= (I − exp [−K (h)])1, (44)

while >(φ) is defined as in (34). Next, we assume that the innovations in the
transition equation are multivariate normally distributed in order to implement the
QML estimation procedure. Because the factor variances now are time-varying, the
covariance matrix of the innovations is given by

Vt (φ) =
∫ t

t−h
exp [−K (t − s)] St exp

[−K ′ (t − s)
]
ds. (45)

Parameter estimates, obtained as outlined above, are reported in Table III. Table
IV presents a number of statistics for in-sample yield pricing errors (observed
minus model yields) corresponding to this specification, as well as for the A0 (3)
model to enable a comparison. Apart from the mean, standard deviation and first-
order autocorrelation of the pricing errors, the table also displays the “Q-invert”
and the “Q-steep” statistics used by Dai and Singleton (2000) to investigate the
performance of various affine models. These statistics show the sample means
of the pricing errors corresponding to the months when the slope of the yield
curve (10-year − 1-year yields) was in the lowest quartile (inverted) and in the
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Table III. QML parameter estimates for the essentially affine A1 (3) model.

The standard errors are based on the asymptotic variance-covariance matrix of White
(1982). “–” denotes that the parameter is estimated to be on the boundary of the admissible
parameter space. The estimates of the measurement error variances in H (φ) are not reported.

Parameter Estimate Standard error

δ0 0.044 0.004

δ1 × 102 0.036 0.015

δ2 × 102 0.000 –

δ3 × 102 0.304 0.091

θ1 29.229 7.813

κ11 0.039 0.005

κ21 −0.169 0.111

κ22 0.417 0.152

κ23 −0.002 0.006

κ31 0.000 –

κ32 −0.727 0.424

κ33 0.949 0.237

β12 2.216 3.029

β13 0.461 0.328

λ1 0.003 0.003

λ2 −0.093 0.100

λ3 −1.646 1.050

ψ21 0.033 0.069

ψ22 −0.241 0.178

ψ23 0.261 0.115

ψ31 0.787 0.819

ψ32 −0.159 0.125

ψ33 0.212 0.158

highest quartile (steep), respectively, among the observed slopes in the sample.
They are useful for detecting systematic patterns of mispricing related to available
information in the observed yield curve. For both models, we see a tendency of
underpricing when the yield curve is inverted, and a tendency of overpricing when
the yield curve is steep. However, in most cases, these tendencies appear limited.

The overall picture is that both models seem to do roughly equally well in terms
of pricing yields in-sample: the average pricing errors are very small, the standard
deviations and correlations are reasonably low, and the aforementioned statistics
based on the slope of the yield curve do not signal any major misspecifications.
However, one caveat seems warranted. There are signs that the two models perform
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Table IV. Moments of pricing errors

All figures refer to statistics for the yield pricing errors expressed in basis points.
“Corr.” is the first-order autocorrelation of the pricing errors, “Q-invert” and “Q-steep”
show the sample means of the pricing errors corresponding to the months when the slope of
the yield curve (10-year minus 1-year yields) was in the lowest quartile and in the highest
quartile, respectively, among the observed values.

Maturity Mean Std. Corr. Q-invert Q-steep

A1 (3) model

3 months −1.9 30.9 0.36 17.2 −12.4

6 months 2.4 26.1 0.19 10.7 −1.2

9 months −0.2 25.2 0.22 6.3 −4.0

1 year −1.3 25.7 0.27 4.2 −5.1

2 years −0.8 26.9 0.31 3.5 −3.9

3 years 0.1 26.1 0.29 4.0 −2.4

5 years −0.1 24.2 0.23 3.5 −1.4

7 years −0.5 23.0 0.15 1.7 −0.3

10 years −0.8 23.2 0.13 −0.8 3.4

A0 (3) model

3 months −0.5 29.9 0.32 17.0 −7.1

6 months 3.3 26.1 0.19 9.9 3.2

9 months 0.3 25.2 0.21 5.1 −0.5

1 year −1.1 25.6 0.27 2.6 −2.2

2 years −1.4 26.6 0.31 1.0 −2.5

3 years −0.9 25.7 0.29 1.1 −1.5

5 years −1.4 23.8 0.23 0.5 −0.5

7 years −1.9 22.6 0.15 −1.0 0.5

10 years −0.4 22.9 0.14 −2.9 4.2

somewhat less well at the very short end of the term structure, as indicated by
the slightly larger standard deviations and autocorrelations of pricing errors for
the 3-month rate. The “Q-invert” and “Q-steep” statistics also indicate that the
performance of the models for the 3-month maturity is less satisfactory than for
other maturities. This is consistent with empirical evidence for the U.S. presented
by Dai and Singleton (2002), who argue that it may be necessary to include a fourth
factor to fully capture the dynamics of the very short end of the term structure.

As a further test of the performance of the two A (3) models discussed above,
Table V shows some statistics related to the (in-sample) forecast performance of
the models. The table reports root mean squared errors (RMSE) of yields for four
different maturities, and for four forecast horizons up to 12 months ahead. In addi-
tion to the results for the two affine models, RMSEs for a random walk benchmark
are shown. As pointed out by Duffee (2002), completely affine models almost
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always fail to perform better than a random walk in terms of forecasting yields,
whereas he shows that the essentially affine specification is more successful in this
respect. Our results are in line with his findings: in none of the cases considered
does the random walk obtain a lower RMSE than either the A0 (3) or the A1 (3)
model. We also find that the A1 (3) model consistently performs at least as well
as its Gaussian counterpart, although the differences are very small. Finally, in
Table V we also report test statistics corresponding to a test of the null hypothesis
that the forecast errors for all four maturities are uncorrelated with the slope of
the yield curve (10-year minus 1-year yields) at the forecast date. This test (la-
belled “Moment test” in the table) is due to Duffee (2002). The idea is to test four
overidentifying restrictions (one for each maturity considered), corresponding to

the moments E
[(
e
j

t,t+T − e
j

t,t+T
)
(st − st )

]
= 0,where ejt,t+T is the forecast error,

corresponding to the forecast made at t for the j -maturity yield at the future date
t +T , and st is the slope of the yield curve observed at t. The test statistic is calcu-
lated along the lines of a GMM objective function, using an optimal Newey-West
(1987) weighting matrix to account for overlapping observations in the moment
conditions. The test statistic is distributed as χ2 with 4 degrees of freedom under
the null hypothesis. We find that both models considered do reasonably well in
capturing the forecasting performance of the term-structure slope, although the
Gaussian model seems to perform slightly better in general. This result is in line
with the findings of Duffee (2002), who shows that the added flexibility of the
market prices of risk in the Gaussian model is important to capture time variations
in expected bond returns.

We now go back and examine the differences between the risk-neutral and the
objective yield distributions for the A1 (3) model. Unfortunately, in contrast with
the Gaussian case, these distributions are not known in closed form, as already
mentioned. One alternative option would therefore be to approximate the con-
ditional densities by the use of Monte Carlo techniques. However, a more exact
and less computationally burdensome approach is available by relying on Fourier
transform analysis, as suggested by Duffie, Pan, and Singleton (2000). From their
results, one can find an expression for the conditional probability that the yield on
a zero-coupon bond at some future date is greater than some specific value. To be
precise, the probability - under some probability measure, say Q - at time t that, at
the future time T , the yield of zero-coupon bond maturing at T + τ will be greater
than z can be written

PrQt (yT (τ) ≥ z) = PrQt

(
−A(τ)

τ
− B (τ)

τ

′
XT ≥ z

)

= PrQt

(
−B (τ)

τ

′
XT ≥ z + A(τ)

τ

)
.

Because the conditional characteristic function of XT is known in closed form,
this probability can, given technical regularity conditions, be expressed as (see
Appendix C in Duffie, Pan, and Singleton (2000))
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Table V. In-sample yield forecast performance: RMSEs and moment test

All figures except those labelled “Moment test” are root mean squared errors (RMSE)
for yield forecasts 3, 6, 9, or 12 months ahead (in sample forecasts), expressed in percentage
points. “Moment test” refers to a test of the null hypothesis that the forecast errors for all four
maturities are uncorrelated with the slope of the yield curve (10-year minus 1-year yields) at
the forecast date. The test statistic for this test is shown for each of the four forecast horizons
considered. The test is implemented as described in Duffee (2002, pp. 422–423), using a
Newey-West weighting matrix with n+1 lags (where n is the number of months in the forecast
horizon) . Figures in parentheses are p-values.

Forecast horizon

Maturity 3 months 6 months 9 months 12 months

A1 (3) model

6 months 0.48 0.72 0.95 1.21

1 year 0.52 0.77 0.99 1.24

3 years 0.52 0.76 0.95 1.15

10 years 0.40 0.60 0.75 0.90

Moment test 3.98 9.77 9.27 8.68

(0.409) (0.045) (0.055) (0.070)

A0 (3) model

6 months 0.48 0.73 0.96 1.23

1 year 0.52 0.77 0.99 1.25

3 years 0.53 0.77 0.96 1.17

10 years 0.40 0.61 0.76 0.91

Moment test 2.99 6.98 7.75 8.85

(0.560) (0.137) (0.101) (0.065)

Random Walk

6 months 0.49 0.76 1.01 1.27

1 year 0.53 0.79 1.01 1.27

3 years 0.53 0.78 0.98 1.21

10 years 0.40 0.61 0.76 0.92

PrQt (yT (τ) ≥ z)

= 1

2
+ 1

π

∫ ∞

0

Im
[
ψQ

(
−iv B(τ)

τ
, Xt , t, T

)
exp

(
−iv

(
z+ A(τ)

τ

))]
v

dv, (46)

where i is the imaginary unit
√−1, and

ψQ
(

−ivB (τ)
τ

,Xt , t, T

)
= E

Q
t

[
exp

(
−ivB (τ)

τ
XT

)]
(47)

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/9/1/97/1574117 by guest on 10 April 2024



INTERPRETING IMPLIED RISK-NEUTRAL DENSITIES: THE ROLE OF RISK PREMIA 125

Figure 7. One-year ahead conditional distribution of the 3-month interest rate, as implied by
the A1 (3)-model, end-March 2002.

denotes the conditional characteristic function. As shown by Duffie et al. (2000)
and Singleton (2001), this characteristic function is for the affine case (under
technical conditions) conveniently given by

ψQ
(

−ivB (τ)
τ

,Xt , t, T

)
= exp (α (t)+ β (t) ·Xt) , (48)

where α (t) and β (t) satisfy a system of complex-valued ODEs with suitable
boundary conditions (see also Appendix A in Hördahl and Vestin (2003)).

Figures 7 and 8 display the results obtained using the estimation procedure
described above for the 3-month and 10-year zero-coupon yields at the one year
horizon, as at end-March 2002. As in the case of the Gaussian specification, the
results indicate that there are substantial differences between the risk-neutral and
the objective yield densities. In the examples shown in Figures 7 and 8, the differ-
ences between the means of the one-year ahead Q and P distributions are 55 basis
points for the 3-month rate, and 22 basis points for the 10-year yield. Moreover,
also the standard deviations differ between the two probability measures, with
the Q distributions having around 5-10% larger standard deviations than the P
distributions.

Perhaps more important than these differences in the moments of the distribu-
tions, are the differences between the implied probabilities of specific outcomes,
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Figure 8. One-year ahead conditional distribution of the 10-year zero-coupon bond yield, as
implied by the A1 (3)-model, end-March 2002.

since this type of information is typically what analysts focus on when interpret-
ing densities implied by observed option prices. Given the estimates obtained for
the A1 (3) model, our results show that these conditional probabilities can differ
substantially between the two probability measures. For example, in the case of the
one-year ahead 3-month rate in Figure 7, the risk-neutral probability of an outcome
above 5.00% is around 25%, while the true objective probability for this outcome
is only 8%. Also in the case of the one-year ahead 10-year yield we find large
differences: in the example above, the Q-probability of an outcome above 5.50%
is 34%, whereas the corresponding P -probability is 18%. These differences in the
moments of the distributions and in the implied probabilities of future outcomes
are by no means extreme. Table VI summarizes some of the statistics regarding
the differences in the moments over the entire sample period, as estimated by the
A1 (3) model.

Comparing with the results obtained from the A0 (3)-model, a few similarit-
ies and some differences are worth pointing out. First, focusing on the 10-year
densities in Figures 6 and 8, the A0 (3) model implies that the risk-neutral density
is centered somewhat to the left of the objective density, while the A1 (3) model
produces the opposite result. A closer look at the relation between the estimated
Q and P densities from the two models shows that the Gaussian model produces
frequent shifts in the relative positioning of the two distributions, whereas for the
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Table VI. Differences between Q and P means and standard deviations for one-year ahead
3-month and 10-year yields, as implied by the Essentially Affine A1 (3) model, January
1983–March 2002

Mean figures refer to the level difference (Q − P ) in basis points; standard deviation
figures refer to the relative difference in percent of the P -distribution volatility.

Average Minimum Maximum

Mean 3-m. rate 53 bps 11 bps 105 bps

Mean 10-yr. yield 25 bps 9 bps 42 bps

St. dev. 3-m. rate 8.4% 6.0% 8.5%

St. dev. 10-yr. yield 4.6% 2.2% 4.7%

A1 (3) model, the risk-neutral density is always centered to the right of the object-
ive density (see Figures 9 and 10). While we have not examined the specific reasons
for these discrepancies, we conjecture that it is the imposed constant-variance as-
sumption in the Gaussian model that drives the swings in the relationship between
the two distributions.

Second, in the example above which relates to end-March 2002, we see that the
densities are more dispersed in the A0 (3) case than in the A1 (3) case. This is due
to the fact that while the yield variance appeared to be relatively low in early 2002,
the former model imposes a constant yield variance for any given maturity. Hence,
in order to get the average variance right, the A0 (3) model overstates the variance
in times of relatively low volatility, whereas the A1 (3) model is better equipped to
capture swings in the volatility. The estimated time series of A1 (3)-variances for
the one-year ahead densities, displayed in Figures 11 and 12 for the 3-month and
the 10-year cases respectively, show a significant degree of variability over time.
This would tend to suggest that stochastic volatility should be an important feature
for term structure models aimed at capturing salient features of actual observed
data.

Third, in both cases, the dispersion of the 3-month PDFs is greater than for the
10-year counterparts. This is due to the typically downward-sloping term structure
of yield volatilities observed in actual yield curve data. If a term structure model is
successful in capturing this feature, one would expect to see a higher variance in
short-rate densities than in long-term yield densities.

As discussed earlier, the flexibility of theA1 (3)model with respect to capturing
time-varying volatility has a cost in terms of reduced flexibility in the mean spe-
cification. As Duffee (2002) shows, the specification of the mean is important in
order to get the expected excess return right. Roughly, this excess return is captured
by the difference in mean of the P and Q distributions. Empirically, the observed
excess return is a volatile component that switches sign over time, and hence the
A0 (3) model utilises its flexible risk premia specification to match this feature of
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the data more closely. Ultimately, which model is to be prefered must be guided
by the aim in mind. Since Duffee (2002) focuses on conditional mean forecasts,
he ends up favoring the A0 (3) model. In this paper, however, we are interested in
the models’ ability to capture the entire distribution of future yields, in which case
it seems likely that also time-varying volatility will be important. The choice of
model should therefore be guided by an evaluation of the density forecast accuracy,
which is the aim of the next section.

Leaving aside the results from the Gaussian model and focusing on the A1 (3)
results, one can conclude that there seem to be relatively substantial differences
between estimated risk-neutral and objective yield densities at the one-year ho-
rizon. As could be expected, the differences between the risk-neutral and the
objective densities tend to decline as the horizon is reduced. This can be seen,
for example, by comparing the plots of the means of the one-year ahead densities
from the A1 (3) model in Figure 9 and 10 with the corresponding 6-month and 3-
month ahead PDFs displayed in Figures 13 and 14, respectively. At times, however,
non-negligible differences remain even for relatively short horizons. Moreover, the
results show that not only the differences between the means of the distributions
can vary substantially over time, but that there also seems to be considerable
time-variation in the estimated variances of the Q and P densities. These find-
ings therefore point to the need for a high degree of caution when interpreting
risk-neutral densities such as option-implied PDFs in terms of actual objective
probabilities.

5. Density Evaluation

The previous section presented estimates of both risk-neutral and objective interest
rate PDFs, and provided some illustrative evidence that these densities differed in
important ways, as well as in a time-varying manner. A natural question to ask
at this point is how reasonable these estimates are. This section aims at shedding
some light on this question. In this context, it is intresting to note that Egorov, Hong
and Li (2003) extends the analysis and methodology of Duffee (2002) to include a
density forecast evaluation on U.S. data. They find evidence that the A1 (3) model
is best suited to capture the features of the U.S. term structure, hence providing
evidence from an independent data set that the restrictions implied by this model
appropriately balances the trade-off in terms of the flexibility in the mean and the
volatility of yields.

Starting with the question whether the risk-neutral densities have been estimated
reasonably well, we merely conclude that the estimated Q-densities are consistent
with the bond-pricing equations used in the estimation process, and that these in
turn do a good job in terms of pricing the bonds (see also Table IV). An alternative
way to evaluate the accuracy of the risk-neutral densities would be to examine how
well they would be able to price traded interest rate derivatives. We leave this for
future research.
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Figure 9. The mean of the one-year ahead conditional distribution of the 3-month interest
rate, as implied by the A1 (3)-model, January 1983–March 2002.

Figure 10. The mean of the one-year ahead conditional distribution of the 10-year
zero-coupon bond yield, as implied by the A1 (3)-model, January 1983–March 2002.
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Figure 11. The square-root of the variance of the one-year ahead conditional distribution of
the 3-month interest rate, as implied by the A1 (3)-model, January 1983–March 2002.

Turning to the accuracy of the estimated physical densities, we employ a re-
cently proposed density forecast evaluation methodology to investigate this issue.
Tests of this kind can help us determine whether the estimated objective interest
rate densities for any given forecast horizon work well in terms of describing
the distribution of realized interest rates at that horizon. Building on the results
of Rosenblatt (1952), Diebold et al. (1998) proposed a method for evaluating a
sequence of density forecasts using a probability integral transform of the realized
outcomes of the forecasted variable. Specifically, denoting the outcome rt and the
ex-ante density forecast ft (·) , the proposed transformation is defined as

xt =
∫ rt

−∞
ft (u) du

= Ft (rt ) . (49)

Diebold et al. (1998) show that if a sequence of density forecasts, {ft (rt )}mt=1 co-
incides with the true density sequence, then the sequence of probability integral
transforms of {rt}mt=1 with respect to {ft (rt )}mt=1 is IID with uniform distribution,

{xt }mt=1
IID∼ U (0, 1) .
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Figure 12. The square-root of the variance of the one-year ahead conditional distribution of
the 10-year zero-coupon bond yield, as implied by the A1 (3)-model, January 1983–March
2002.

Figure 13. The mean of the 6-month ahead conditional distribution of the 3-month interest
rate (panel A) and of the 10-year zero-coupon bond yield (panel B), as implied by the
A1 (3)-model, January 1983–March 2002.
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Figure 14. The mean of the 3-month ahead conditional distribution of the 3-month interest
rate (panel A) and of the 10-year zero-coupon bond yield (panel B), as implied by the
A1 (3)-model, January 1983–March 2002.

Diebold et al. (1998) did not focus on formal testing procedures, but instead
suggested the use of simple visual tools such as histograms and correlograms to
ascertain whether the transformed series x is IID U (0, 1).

More recently, Berkowitz (2001) extended the Diebold et al. (1998) approach
to allow for formal testing of the density forecasts. This new approach relies on a
simple transformation of the x-series in (5) into a normal distribution (under the
null). More precisely, if xt is IID U (0, 1), then the transformed series

zt = >−1

[∫ rt

−∞
ft (u) du

]

= >−1 (xt ) (50)

will be IID N (0, 1), which, as Berkowitz (2001) notes, can be tested using e.g.,
LR tests. We implement this testing methodology for objective densities obtained
from the estimated A0 (3) and A1 (3) models. Specifically, we consider the same
maturities discussed in previous sections (3-month and 10-year rates) and we focus
on two forecast horizons: 3 months ahead and 12 months ahead. For each combina-
tion of model, horizon and maturity, the null hypothesis that the transformed series
z is normally distributed with zero mean, unit variance, and zero first-order auto-
correlation (µz = 0, σz = 1, ρz = 0) is tested against four different alternatives as
follows:

Test Halt.

1 µz = µ̂z, σz = 1, ρz = 0

2 µz = 0, σz = σ̂z, ρz = 0

3 µz = µ̂z, σz = σ̂z, ρz = 0

4 µz = µ̂z, σz = σ̂z, ρz = ρ̂z
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We implement the tests by obtaining the log-likelihood values under the null
hypothesis and the various alternatives, and then calculate the corresponding like-
lihood ratio statistics. All tests are in-sample tests, in the sense that the density
forecasts at a given forecast date are conditional on the information available about
the term structure and the state variables at that time, given the parameter values
for the model obtained using the entire sample.10

Table VII displays the results for both the A0 (3) and A1 (3) models. Starting
with the Gaussian model in Panel A, the test results show that this model does
not perform very well at the 12-month forecast horizon: in 7 out of 8 cases, the
null hypothesis can be rejected. In other words, objective densities estimated with
the A0 (3) model do not seem to coincide with the true densities at the 12-month
horizon. For the 3-month ahead forecast horizon, the results are more mixed,
since we we reject in half of the cases, for both maturities. The critical element
in these rejections seems to be that µz differs significantly from zero, meaning
that the conditional means of the estimated densities differ systematically from the
realizations.

Next, we turn to Panel B in Table VII, which shows the results for the A1 (3)
model. Starting again with the 12-month forecast horizon, we find that the A1 (3)
model does considerably better than the Gaussian model. In 6 out of 8 cases we
cannot reject the null hypothesis for the estimated objective densities. In particular,
for the 10-year bond yield densities, the null is not rejected in any of the four cases.
The two rejections appear to be due to a failure in capturing the conditional volat-
ility of the 3-month interest rate. For the 3-month forecast horizon, the estimated
objective densities again seem to do a relatively good job in terms of capturing
the behavior of the outcomes. As is the case of the longer forecast horizon, we
fail to reject the null in 6 out of 8 cases. This time the rejections seem to be due
to correlated forecast errors for the 3-month rate, and to differences between the
modelled and the actual volatility of the 10-year yield at the 3-month horizon. It
is worthwhile pointing out that in none of the cases do we obtain any rejection
as a result of significant deviations of µz from zero. This indicate that the A1 (3)
model seems to do a good job in terms of capturing the time-varying level of risk
premia at both horizons and for both maturities. Overall, we conclude from these
tests that the A1 (3)model is able to capture objective forward-looking densities in
a much more satisfactory way than the Gaussian model, although some room for
improvement still remains.11

10 Ideally, an out-of-sample testing approach would have been preferable. However, the limited
sample period and the need for a relatively large number of realizations to obtain meaningful test
results meant that an out-of-sample approach had to be ruled out in practice.

11 We also performed similar test on the estimatedQ-densities’ ability to capture the distribution of
the realizations (results not shown). As could be expected, the risk-neutral densities did not perform
very well in this regard, in particular at the one-year ahead horizon where we rejected the null in
all 16 cases. This again highlights the dangers associated with relying on RNDs as measures of
expectations.
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Table VII. Berkowitz (2001) density forecast evaluation tests

The test statistics are chi-squared distibuted with 1 degree of freedom for tests 1 and
2, 2 degrees of freedom for test 3, and 3 degrees of freedom for test 4. ∗ denotes statistical
significance at the 5% level. Monthly density forecasts are used in all tests, except in test 4,
where non-overlapping observations are used, since these tests include the autocorrelation
coefficient ρ.

PANEL A: Evaluation of A0 (3) densities

3-month forecast horizon

LR1 LR2 LR3 LR4

3m. rate/P -measure 13.24∗ 0.13 12.93∗ 7.31

10y. rate/P -measure 4.38∗ 3.30 7.06∗ 6.89

12-month forecast horizon

LR1 LR2 LR3 LR4

3m. rate/P -measure 4.81∗ 38.76∗ 41.62∗ 7.27

10y. rate/P -measure 15.79∗ 26.12∗ 36.69∗ 11.43∗

PANEL B: Evaluation of A1 (3) densities

3-month forecast horizon

LR1 LR2 LR3 LR4

3m. rate/P -measure 1.66 1.03 2.86 8.21∗
10y. rate/P -measure 0.03 4.19∗ 4.22 4.38

12-month forecast horizon

LR1 LR2 LR3 LR4

3m. rate/P -measure 1.80 25.49∗ 26.65∗ 6.57

10y. rate/P -measure 3.82 1.49 4.91 6.97

6. Conclusions

A commonly used approach to extract information on market expectations and the
perceived degree of uncertainty about some asset price is to estimate the implied
density using observed prices of options written on the asset of interest. However, it
is well known that this approach produces the risk-neutral density, rather than the
true objective density. This paper examines the differences between risk-neutral
and objective probability densities for interest rates and bond yields. This kind
of analysis may be of interest for e.g. central banks, since RNDs are commonly
employed by central banks as indicators of market expectations for underlying
macroeconomic fundamentals as well as future monetary policy. Instead of mod-

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/9/1/97/1574117 by guest on 10 April 2024



INTERPRETING IMPLIED RISK-NEUTRAL DENSITIES: THE ROLE OF RISK PREMIA 135

eling the terminal distribution directly, the approach taken here is to model the
dynamics of the underlying state variables. Specifically, a multi-factor essentially
affine modeling framework is applied to German time-series and cross-section
term structure data in order to identify both the risk-neutral and the objective term
structure dynamics.

In general, the results show that there are important differences between risk-
neutral and objective distributions as a result of risk premia in bond prices. For
example, the one-year ahead distributions for the three-month interest rate and
the ten-year bond yield display substantial differences in both the means and the
variances of the two types of distributions. While the magnitude of these differ-
ences diminish as the forecast horizon is shortened, important differences remain
for horizons that are commonly used in practice. The results also indicate that the
differences between the objective and the risk-neutral distributions vary over time,
as a result of time-varying risk premia. Moreover, density forecasts performed on
estimated objective densities show that the proposed approach does reasonably
well in terms of capturing the true realized densities (for the A1 (3) model). We
therefore conclude that one should be cautious in interpreting RNDs, such as
option-implied densities, in terms of expectations. The method used in this paper
provides one alternative approach which can be used to identify risk premia and
thereby the objective probabilities of future outcomes.

Appendix

Given the state-space specification for the A0 (3)model, the prediction step follows
from the transition equation, resulting in (suppressing dependence on φ)

Ŷt |t−h = E
[
Yt | Rt−h

]
= >Ŷt−h, (51)

and an associated MSE matrix,

M̂t |t−h = E

[(
Yt − Ŷt |t−h

)(
Yt − Ŷt |t−h

)′ | Rt−h
]

= >M̂t−h>′ + Vt . (52)

Next, the observed yields Rt are used in the update step, to provide the filtered
estimator of Y :

Ŷt = E [Yt | Rt ]
= Ŷt |t−h + M̂t |t−hZ′F−1

t υt , (53)

where υt is the vector of prediction errors,

υt = Rt −
(
d + ZŶt |t−h

)
, (54)
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and Ft is the covariance matrix of the prediction errors,

Ft = cov (Rt | Rt−h) = E
[
υtυ

′
t | Rt−h

]
= ZM̂t |t−hZ′ +H. (55)

The update of the MSE matrix M is given by

M̂t = E

[(
Yt − Ŷt

) (
Yt − Ŷt

)′ | Rt
]

= M̂t |t−h − M̂t |t−hZ′F−1
t ZM̂t |t−h

=
(
I − M̂t |t−hZ′F−1

t Z
)
M̂t |t−h. (56)

The prediction errors and their covariance matrix serves as input into the log-
likelihood function of the Gaussian state-space model, resulting in the following
likelihood function:

lnL =
T∑
t=1

lnLt,

lnLt = −1

2
ln (2π)− 1

2
ln |Ft | − 1

2
υ ′
tF

−1
t υt . (57)
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